Approaching the neutrino mass problem with a beam dump experiment

Peter Ballett, Tommaso Boschi, Silvia Pascoli

NExT workshop Queen Mary University of London

April 3, 2019

Approaching the neutrino mass problem with a beam dump experiment

Approaching the neutrino mass problem with a beam dump experiment

• yes, it is a problem: why is it so light?

Approaching the neutrino mass problem with a beam dump experiment with DUNE ND

- yes, it is a problem: why is it so light?
- there will be a neutrino experiment with good capabilities!

- yes, it is a problem: why is it so light?
- there will be a neutrino experiment with good capabilities!
- If we see new physics, then we will be able "solve" the puzzle

Neutrino mass: the problem

- NuFIT 4.0 [2018] $\Delta m_{21}^2 = 7.39^{+0.21}_{-0.20} \times 10^{-5} \text{ eV}^2$ $|\Delta m_{31}^2| = 2.525^{+0.033}_{-0.031} \times 10^{-5} \text{ eV}^2$
- Planck [2018] $\sum m_{\nu} < 0.12 \ {\rm eV}$ Troitsk [2011] with $^3{\rm H}\ \beta$ decay
 - $\sum |U_{e
 u}|^2 m_
 u < 2.05$ eV

Issues:

- No ν_R in the SM, so no Yukawa coupling
- A neutrino (~eV) is 2×10^{-6} lighter than e, 6×10^{-12} than a t quark
- Dirac vs Majorana ⇒ LNV

Neutrino mass: a "simple" solution

Extend the SM by adding singlet fermions, N_i

$$\mathcal{L}_{\mathsf{SM}+N} = \mathcal{L}_{\mathsf{SM}} + i\overline{N}_i \partial \!\!\!/ N_i + Y_{\alpha i} \overline{L}_{\alpha} \widetilde{H} N_i^c + \frac{1}{2} (M_R)_{ij} \overline{N^c}_i N_j + \text{h.c.}$$

• Type I seesaw

Neglecting matrix nature of $m_{\nu} = -m_D M_R^{-1} m_D^T + \dots$, if $m_D \sim \text{EW}$ then $M_R \sim \text{GUT}$; lower scale possible, but bounds on

$$|\textit{U}_{lpha\textit{N}}|^2\simeq m_
u/\textit{M}_N\lesssim 10^{-7}$$
 to $^{-10}$

Symmetry-protected seesaw

Define $N_{i=1..a}$ with L = 1 and $S_j = N_{j=1..b}^c$ with L = -1

Cancellations between pairs ensured by 't Hooft natural LNV parameters + symmetry to protect texture of $\mathcal{M} =$ forbidden mixing angles and testable neutrino masses

Light neutrino masses \propto LNV parameters

Neutrino mass: current constraints [Atre et al., 2009]

- keV \sim MeV: kinks in Curie plots, 0 $\nu\beta\beta$ decay
- MeV~GeV: peak searches in pion and kaon decays
- MeV~GeV: HNL decays in beam dump experiments
- $\bullet~{\sim} \text{TeV:}$ collider physics

Beam dump experiment: neutrinos

Dumping a beam of high energy **proton** on a fixed target (or other parts of the beam facility [MiniBooNE, 2017])

Producing pions and muons (and others) which decay \Rightarrow this is the conventional way of generating a **beam of neutrinos**!

	Channel	BR (%)	$m_N(MeV)$				
π^+	$\mu^+ u_\mu$	99.98	33.91		Channel	BR (%)	$m_N/{ m MeV}$
	$e^+ \nu_e$	0.01	139.06	D_s^+	$\tau^+ \nu_{\tau}$	5.48	191.42
K^+	$\mu^+ u_\mu$	63.56	387.81	-	$\mu^+ u_\mu$	0.55	1862.63
	$\pi^0 e^+ \nu_e$	5.07	358.19		$e^+ \nu_e$	0.008	1967.78
	$\pi^0 \mu^+ u_\mu$	3.35	253.04	τ^+	$\pi^+\pi^0\overline{\nu_{ au}}$	25.49	1502.31
	$e^+ \nu_e$	0.16	493.17		$\overline{ u_{ au}} e^+ u_e$	17.82	1776.35
K_{l}^{0}	$\pi^{\pm} e^{\mp} \nu_e$	40.55	357.12		$\overline{ u_{ au}}\mu^+ u_{\mu}$	17.39	1671.20
-	$\pi^{\pm}\mu^{\mp} u_{\mu}$	27.04	252.38		$\pi^+ \overline{\nu_{\tau}}$	10.82	1637.29
μ^+	$\overline{\nu_{\mu}}e^{+}\nu_{e}$	100.00	105.14				

Beam dump experiment: DUNE

80 GeV protons beam on graphite target, total of 1.32×10^{22} POT, for each FHC and RHC modes

- DUNE ND placed at 574 m! ν flux $\sim 5 \times 10^6$ times more intense than at the FD (at 1300 km)
- LArTPC is $(3 \times 3 \times 4)$ m³ by 50t + HPArFGT $(3.5 \times 3.5 \times 6.4)$ m³ by 8t
- Other examples: PS191, SBN programme, NA62, SHiP, etc.

$$\mathcal{M} = \begin{pmatrix} 0 & m_D^T & 0 \\ m_D & 0 & M_R \\ 0 & M_R^T & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & \mu_R & 0 \\ 0 & 0 & \mu_S \end{pmatrix} \qquad m(3 \times a) \text{ and } M(b \times a)$$

In the LNC limit, min{3 + b, a} Dirac pairs and |3 + b - a| massless Weyl states The masses of the Dirac pairs are just the **SVD values** of (m_D^T, M_R^T) For $a \neq b$, extra massless Weyl state, degenerate with the light neutrinos

Minimal realisation [Abada, Lucente, 2014] that gives: light neutrino masses and a mass MeV - GeV with strong couplings?

- ISS(2,2) in which the HNL belongs to the lightest pseudo-Dirac pair
- ISS(2,3) in which the HNL belongs to the lightest pseudo-Dirac pair
- ISS(2,3) with large LNV parameter and the Weyl state becomes a Majorana state with target mass

Approach: matrix scan

$$\mathcal{M} = \begin{pmatrix} 0 & m_D^T & 0 \\ m_D & \mu_R & M_R \\ 0 & M_R^T & \mu_S \end{pmatrix}$$

Random matrix scan of 7a + b + 2ab of ISS(a,b)The combinations $(m_N, |U_{\alpha N}|^2)$ are clustered together in **regions** \Rightarrow any point inside is explained by a **valid mass matrix**

Constraints:

- \bullet oscillation: $\Delta \mathit{m}^2$ and $\mathit{U}_{\mathsf{PMNS}}$ structure
- cLVF processes like $\mu \rightarrow e\gamma$, Br < 4.2 × 10⁻¹³ [MEG collaboration, 2016]
- 0νββ limits, m_{ββ} < 150 meV [GERDA collaboration, 2017]
- non-unitarity from EW precision measurements [Fernandez-Martinez et al., 2016]

$$\mathsf{Br} = \frac{3\alpha}{32\pi} \left| \sum_{i} \hat{U}_{\mu i}^{*} \, \hat{U}_{e i} \, G\left(\frac{m_{i}^{2}}{M_{W}^{2}}\right) \right|$$

$$m_{\beta\beta} \simeq \left| \sum_{i} \hat{U}_{ei}^2 \frac{p^2 m_i}{p^2 - m_i^2} \right|$$

$$|\delta_{lphaeta} - (\underbrace{U}_{\mathsf{PMNS}} \underbrace{U}^{\dagger}_{lphaeta})_{lphaeta}| = \left|\sum_{i=4}^{n} U_{lpha i} U^{*}_{eta i}
ight|$$

Building observables: Majorana vs Dirac

For a charged current process

 $\mathsf{d} \Gamma(N \to \ell_{\alpha}^{-} X^{+}) = \mathsf{d} \Gamma(N_{D} \to \ell_{\alpha}^{-} X^{+}) \quad \text{and} \quad \mathsf{d} \Gamma(N \to \ell_{\alpha}^{+} X^{-}) = \mathsf{d} \Gamma(\overline{N}_{D} \to \ell_{\alpha}^{+} X^{-})$

For a neutral current process

$$d\Gamma(N \to \nu Y) = d\Gamma(N_D \to \nu Y) + d\Gamma(\overline{N}_D \to \overline{\nu} Y)$$
$$\Downarrow$$
$$\Gamma(N \to \nu Y) = 2\Gamma(N_D \to \nu Y)$$

Practical Dirac-Majorana confusion theorem [Kayser, Shrock, '82]: factor of two enhancement is absent for light neutrinos, due to polarisation which suppresses $\Delta L = 2$ contributions

However, if mass effect is not negligible, regardless of polarisation

Dirac and Majorana neutrinos have distinct total decay rates

Building observables: effect of helicity

Arbitrariness of the polarisation makes total decay not affected by helicity Distribution **is** affected though!!

e.g. decay to pseudo-scalar meson: charged current, for both Dirac and Majorana

$$\begin{split} \frac{\mathrm{d}\Gamma_{\pm}}{\mathrm{d}\Omega_{\ell_{\alpha}}} \big(\mathsf{N} \to \ell_{\alpha}^{-} \mathsf{P}^{+} \big) \propto & |U_{\alpha \mathsf{N}}|^{2} \lambda^{\frac{1}{2}} (1, x_{\ell}, x_{\mathsf{P}}) \\ & \times \left[(1 - x_{\ell})^{2} - x_{\mathsf{P}} \left(1 + x_{\ell} \right) \pm (x_{\ell} - 1) \lambda^{\frac{1}{2}} (1, x_{\ell}, x_{\mathsf{P}}) \cos \theta \right] \end{split}$$

Neutral current, for Majorana \Rightarrow **isotropic**

$$\frac{\mathrm{d} \Gamma_{\pm}}{\mathrm{d} \Omega_{P}} \Big(N \rightarrow \nu P^{0} \Big) \quad \propto \Bigg(\sum_{\alpha = e}^{\tau} \left| U_{\alpha N} \right|^{2} \Bigg) (1 - x_{P})^{2}$$

Neutral current, for Dirac \Rightarrow angular dependence

$$\frac{\mathrm{d}\Gamma_{\pm}}{\mathrm{d}\Omega_{P}} \left(\mathsf{N}_{D} \to \nu \mathsf{P}^{0} \right) \propto \left(\sum_{\alpha=e}^{\tau} \left| U_{\alpha N} \right|^{2} \right) (1 - x_{\mathsf{P}}) [1 - x_{\mathsf{P}} \mp (1 - x_{\mathsf{P}}) \cos \theta]$$

Building observables: decay rates

Building observables: production scaling

Helicity is important! The flux of HNL is the flux of light neutrino scaled by

$$\mathcal{K}^{\pm}_{X,lpha}(m_N)\equiv rac{\Gamma^{\pm}(X o NY)}{\Gamma(X o
u_{lpha}Y)} \quad \Rightarrow$$

fixes phase space and helicity unsuppression

If we knew **all contributions** to the light neutrino flux:

Tommaso Boschi

Experiment: ν flux prediction (FHC mode)

Tommaso Boschi

Experiment: number of events

Number of events to be compared with **background** (= SM neutrino interactions)

$$\mathcal{N}_{d} = \int \mathrm{d}E \ e^{-\frac{\Gamma_{\mathrm{tot}}L}{\gamma\beta}} \left(1 - e^{-\frac{\Gamma_{\mathrm{tot}}\lambda}{\gamma\beta}}\right) \frac{\Gamma_{d}}{\Gamma_{\mathrm{tot}}} \frac{\mathrm{d}\phi_{N}}{\mathrm{d}E} W_{d}(E)$$

- GENIE simulation of neutrino events in argon are input to fast MC of DUNE ND Reconstruction
- Custom MC simulation of HNL decays inside DUNE ND & reconstruction
- Particle identification reduces background by a factor from 10 and up to 10⁴
- Comparison of kinematic distributions helps reduce background further
- $W_d(E)$ is a the **binned ratio** of the true *N* energy spectrum after and before the background reduction

For each channel, define 90 % C.L. sensitivity using <u>Feldman & Cousins method</u> [Feldman, Cousins, '98].

Results: sensitivity to discovery

<u>Results</u>: sensitivity to LNV

Focus on $N \rightarrow e\pi$ and $N \rightarrow \mu\pi$ channels: best sensitivity!

If HNL is Dirac (and if there is charge-ID in ND):

- FHC mode \Rightarrow more $\ell^-\pi^+$ (factor ~ 10)
- RHC mode \Rightarrow more $\ell^+\pi^-$ (factor \sim 3 to 5)

[[]de Gouvea, 2019]

Mass (GeV)

If HNL is Majorana \Rightarrow same rate of $e^{-}\pi^{+}$ and $e^{+}\pi^{-}$

Mass (GeV)

2

Conclusions

- Varieties of model can address the neutrino problem
- Inverse seesaw mechanism provides also testable observables
- Helicity/polarisation are important!
- DUNE ND is very sensitive and can "close the gap"
- If we see a HNL, this can be explained by a low scale mass models
- With good statistics, we can determine if it is majorana or Dirac

If we don't see anything

- more powerful experiment?
- new techniques?

• better theory?

Efforts from all sides needed!

Thank you.