

# First Oscillation Results Using Neutrinos and Antineutrinos from the NOvA Experiment

Erica Smith

Indiana University

June 6, 2019

#### **Neutrinos**



#### 

- What we don't know:
  - What the absolute neutrino mass is
  - What the mass hierarchy is
  - Why neutrino masses are so small
  - If they are CP violating
  - Why neutrino mixing looks so different from mixing in the quark sector

#### **Neutrino Oscillations**

• Created in one flavor but can be detected in another





### **Three-Flavor Oscillations**

• The mixing matrix can be written in terms of 3 angles and 1 phase. Usually factorized into components directly related to the experiments:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{+i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad c_{ij} = \cos\theta_{ij}$$

- The (12) sector: Solar and Reactor, L/E 15,000 km/GeV
- The (23) sector: Atmospheric and Accelerator, L/E 500 km/GeV
- The (13) sector: Reactor and <u>Accelerator</u>, L/E 500 km/GeV  $\sin^2 \theta_{23} = 0.51 \pm 0.05$   $\sin^2 \theta_{13} = 0.0219 \pm 0.0012$   $\sin^2 \theta_{12} = 0.304 \pm 0.014$  $\delta_{CP} = ?$

(from global averages)

#### **Mass Squared Differences and Hierarchy**

• Neutrino oscillation experiments can access the mass squared differences

 $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2 \qquad |\Delta m_{32}^2| = (2.44 \pm 0.06) \times 10^{-3} \text{ eV}^2$ 



- By convention we denote the mass eigenstate with the largest fraction of  $v_e$  as  $v_1$
- We haven't determined which mass eigenstate is the lightest →
   "hierarchy"
  - Normal: v<sub>1</sub> is the lightest, just like the electron is the lightest charged lepton
  - Inverted:  $v_3$  is the lightest

#### **Sources of v's for Oscillation Studies**





NOVA

## $\nu_{\mu} \rightarrow \nu_{\mu}$ Oscillations

Probability of  $\nu_{\mu}$  survival in a  $\nu_{\mu}$  beam





## $\nu_{\mu} \rightarrow \nu_{e}$ Oscillations in Matter

Probability of  $\nu_e$  appearance in a  $\nu_\mu$  beam

$$P(\nu_{\mu} \to \nu_{e}) \approx \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^{2} \Delta_{jk} \equiv P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}}} P_{\text{sol}} \left( \cos \Delta_{32} \cos \delta_{CP} \mp \sin \Delta_{32} \sin \delta_{CP} \right) \Delta_{jk} \equiv 0$$

$$\sqrt{P_{\rm atm}} = \sin(\theta_{23})\sin(2\theta_{13})\frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL}\Delta_{31} \qquad \sqrt{P_{\rm sol}} = \cos\theta_{23}\sin(2\theta_{12})\frac{\sin(aL)}{aL}\Delta_{21}$$

$$a = \frac{G_F N_e}{\sqrt{2}}$$

 $\Delta m_{ik}^2$ 

- $V_{\mu} \rightarrow V_{e}$  depends on:
  - CP phase:  $\delta_{CP}$
  - Mass hierarchy and matter effects
  - Atmospheric parameters:  $\sin^2(\vartheta_{23})$ ,  $\Delta m^2_{32}$
  - The smallest mixing angle:  $\vartheta_{13}$
  - Solar parameters:  $\sin^2(\vartheta_{12})$ ,  $\Delta m^2_{12}$



### **Open Questions in Neutrino Physics**

- What is the mass hierarchy for atmospheric neutrinos?
- Is there a  $v_{\mu}$ - $v_{\tau}$  symmetry?
  - Is the large mixing angle maximal, and if not, what is the octant?
- Is CP violated in the lepton sector?
- Are there other neutrinos beyond the three active flavors?









Vacuum and no CP violation: neutrinos and antineutrinos are the same

Erica Smith



CP-violation through δ creates opposite effects in neutrinos and antineutrinos





CP-violation through δ creates opposite effects in neutrinos and antineutrinos





Matter effects also introduce opposite neutrino-antineutrino effects.



Erica Smith



The octant creates the same effect in neutrinos and antineutrinos.



Erica Smith

#### **Comparing Long Baseline Experiments**





### **Physics Goals**

- Is the mass hierarchy "normal" or "inverted"?
- Is there a  $v_{\mu}$   $v_{\tau}$  symmetry? I.e., is the large mixing angle maximal? If not, what is the octant?
- Is CP violated in the lepton sector?

In addition: Are there other neutrinos beyond the three known active flavors?

Plus: cross section analyses, searches for exotic phenomena and non-beam physics





## The NOVA Collaboration

(A)

### NOvA

- NOvA is a long-baseline neutrino oscillation experiment
- Study neutrinos from the NuMI beam at Fermilab
- Two functionally identical detectors:
  - Far Detector (FD) 14 kton; on the surface
  - Near Detector (ND)
    0.3 kton; underground





#### **The NuMI Neutrino Beam**

NOVA



#### **The NuMI Antineutrino beam**



חר

NOVA

Erica Smith



- Production cross section is a little higher for  $\pi^+ \rightarrow \nu_{\mu}$  than for  $\pi^- \rightarrow \overline{\nu}_{\mu}$ 
  - p<sup>+</sup> colliding with p<sup>+</sup> and n<sup>0</sup> in the target
- Wrong-sign: v in the  $\overline{v}$  beam (or vice versa).
- Off-axis beam reduces the wrong-sign
  - WS primarily would primarily come from the unfocused high-energy tail.



- The big difference is in the interaction: the cross section for antineutrinos is **~2.8 times lower** than for neutrinos.
- Antineutrinos also tend to have more lepton energy and less hadronic energy.
  - Lower kinematic *y*
  - More forward-going



#### **NOvA Detectors**





#### **NOvA detectors**





#### **Near Detector Event Display**



#### (colors show hit times)

#### Far Detector Event Display – 550 µs



(colors show charge)

#### **Far Detector Event Display – 10 μs**



#### (colors show charge)

#### **Selected Events from Near Detector Data**





Erica Smith

## Joint Neutrino-Antineutrino Analysis

#### **Event Identification**

- We use a convolutional neural network.
- Successive layers of "feature maps":
  - Create many variants on the original image which enhance different features.
  - Later layers apply variations to the feature maps from the previous layer.
- Ends with a "feed forward" neural network to create a multi-label classifier.





#### **Event Identification**





Erica Smith

#### **Muon Neutrino Energy**



- Muon energy is calculated with a conversion from track length.
- Hadronic energy is the summed calorimetric energy of the non-muon hits, converted to true energy.
- Muon energy resolution (3%) is much better than hadronic energy resolution (30%).





## **Electron Neutrino Energy**



• Energies reconstructed calorimetrically

**EM Fraction** 

#### **Muon neutrino analysis**

- 1. Identify contained  $v_{\mu}$  CC events in each detector
- 2. Measure Near and Far energy spectra
- 3. Extract oscillation information from differences between both energy spectra





#### **Electron neutrino analysis**

- 1. Identify contained  $v_e(v_{\mu})$  CC candidates in each detector.
- 2. Use data to improve the prediction from the simulation:
  - ND  $v_{\mu}$  candidates  $\rightarrow v_{e}$  signal in the FD
  - ND  $v_e$  candidates  $\rightarrow$  FD beam backgrounds
  - FD data outside of the beam time window  $\rightarrow$  FD cosmic ray background
- 3. Interpret any FD data excess over predicted backgrounds as  $v_e$  appearance





#### **Constraints from ND Data**

- Use reco-to-true migration for signal extrapolation
- v<sub>e</sub> backgrounds use the Far/Near ratio in bins of reconstructed energy
- Other (small) beam backgrounds are taken from simulation




# **Muon Neutrinos at the ND**



- Selected muon neutrino and antineutrino charged current interactions in ND.
- Used in the signal extrapolation
- Wrong sign contamination is estimated to be 3% (11%) for neutrino (antineutrino) beam.

# **Electron Neutrinos at the ND**



- ND v<sub>e</sub>-like sample has no appearance all background
- To constrain backgrounds in the neutrino beam we use two data-driven technique
- For the antineutrino beam we scale all components proportionally







#### INDIANA UNIVERSITY

# $v_e$ Decomposition

The CC/NC constrained using the number of observed Michel electrons.

• Determine the fraction of the two components in each analysis bin.







# FD selection and cosmic rejection

- Because the far detector sits on the surface, cosmic backgrounds are a significant issue.
- Even with a pulsed beam and excellent timing resolution, there is still a significant cosmic background.
- Selection steps are tuned to reduce cosmic backgrounds while maintaining sensitivity to oscillations





# Binning for Sensitivity: $v_{\mu}$ Events



- Oscillation sensitivity depends on spectrum shape
- Improve sensitivity by
- separating high-resolution and low-resolution events.
- Split into 4 quantiles by hadronic energy fraction.
  - Muon energy resolution (3%) is much better than hadronic energy resolution (30%).





#### v<sub>μ</sub> and v<sub>μ</sub> data at the Far Detector NovA Preliminary Antineutrin











# **Binning for Sensitivity: v<sub>e</sub> Events**

- Oscillation sensitivity depends on separating  $\boldsymbol{v}_e$  signal from background
- PID binning separates sample by purity
- Energy binning separates appeared  $v_e$  from beam  $v_e$



#### $v_{\rho}$ and $\overline{v}_{\rho}$ data at the Far Detector

INDIANA UNIVERSITY

#### **Core Event – High CVN Bin**



### **Peripheral Event**













**NOvA Preliminary** 





#### Most important systematics:

- Detector Calibration Will be improved by the test beam program
- Neutrino cross sections Particularly nuclear effects (RPA, MEC)
- Muon energy scale
- Neutron uncertainty **new** with  $\overline{v}$ 's



#### 



NOVA











- Note: you cannot read the rejection of the MH from this plot.
  - This is an FC-corrected plot of significance for rejecting particular sets of values ( $\delta$ , octant, hierarchy).
  - It is *not* a likelihood surface, so it cannot be profiled to remove  $\delta$  and the octant.
- Additionally, the MH itself is highly non-Gaussian so we need to use FC.
  - A binary choice with degenerate, unknown parameters.





- $\chi^2(IH) \chi^2(NH) = 2.47$
- giving a *p*-value of **0.076** from the FC empirical  $\chi^2$ .
- or equivalently **1.8σ**



# **NOvA prospects - 2019**



Update with ~80% more antineutrino data right around the corner!

# **NOvA prospects**

- Extended running through 2024, proposed accelerator improvement projects and test beam program enhance NOvA's ultimate reach.
- $3 \sigma$  sensitivity to hierarchy (if NH and  $\delta_{CP}=3\pi/2$ ) for allowed range of  $\theta_{23}$  by 2020.  $3 \sigma$  sensitivity for 30-50% (depending on octant) of  $\delta_{CP}$  range by 2024.





# **NOvA prospects**

- Extended running through 2024, proposed accelerator improvement projects and test beam program enhance NOvA's ultimate reach.
- 2+ σ sensitivity for CP violation in both hierarchies at δ<sub>CP</sub>=3π/2 or δ<sub>CP</sub>=π/2 (assuming unknown hierarchy) by 2024.





# **Summary and Outlook**

- First NOvA anti-neutrino data (6.9e20 POT) has been analyzed together with 8.85e20 POT of neutrino data
  - Update with 80% more antineutrino data coming soon!
- We observe >4  $\sigma$  evidence of electron anti-neutrino appearance
  - Achieved in our **first** antineutrino result thanks to outstanding beam performance and support from Fermilab
- A joint appearance and disappearance analysis for these data:
  - Prefers Normal Hierarchy at 1.8  $\sigma$  and excludes at  $\delta_{CP} = \pi/2$  at > 3  $\sigma$
  - Disfavors maximal mixing at 1.8 σ and the lower octant at a similar level
- Future NOvA running can reach 3  $\sigma$  sensitivity for the mass hierarchy by 2020 and covers significant CP range by 2024.
  - Thanks to extended running, accelerator improvements, and analysis improvements thanks to the test beam.







INDIANA UNIVERSITY

NOVA



76

NOVI





INDIANA UNIVERSITY





# **Particle Identification**





# **Energy Estimation - v**

- Electromagnetic energy is the
- summed calorimetric energy for CVN-selected showers. Hadronic energy is the total calorimetric energy minus EM shower energy. Neutrino energy is calculated as the • Hadronic energy is the total
- Neutrino energy is calculated as the following:

$$E_{\nu e} = A^* E_{EM} + B^* E_{HAD} + C^* E_{EM}^2 + D^* E_{HAD}^2$$







# Near Detector $v_e$ Energy





# Energy Resolution - $v_e$



- events are weighted by a function that flattens the true energy spectrum implicit in the simulation
- this minimizes bias between 1-4 GeV


# Energy Resolution - $v_e$





# **Other Selections**

- Some basic additional cuts:
  - Contained, fiducial events, wellreconstructed, reasonable energy range
- An additional ν<sub>μ</sub> requirement: a track identified as a muon.
  - CVN identifies events with a muon, but it and does not identify the muon track.
  - Identify muons in reconstructed tracks using a kNN
    - Track length, dE/dx, scattering, fraction of track-only planes



INDIANA UNIVE

Erica Smith

- Additional cosmic rejection needed at the Far Detector.
  - 11 billion cosmic rays/day in the Far Detector on the surface.
  - 10<sup>7</sup> rejection power required *after* timing cuts are applied.
- The  $v_{\mu}$  sample uses a BDT based on:
  - Track length and direction, distance from the top/sides, fraction of hits in the muon, and CVN.

Cosmic rejection for the *v<sub>e</sub>* sample is in 2 stages:

- **Core sample**: require contained events, beamdirected events, away from the detector top
- Peripheral sample: events failing the core selection can pass a BDT cut plus a tight CVN cut.
  - Different BDT from  $v_{\mu}$  based on the same containment variables used for cuts in the core sample.



- Additional cosmic rejection needed at the Far Detector.
  - 11 billion cosmic rays/day in the Far Detector on the surface.
  - 10<sup>7</sup> rejection power required *after* timing cuts are applied.
- The  $v_{\mu}$  sample uses a BDT based on:
  - Track length and direction, distance from the top/sides, fraction of hits in the muon, and CVN.

Cosmic rejection for the *v<sub>e</sub>* sample is in 2 stages:

- **Core sample**: require contained events, beamdirected events, away from the detector top
- Peripheral sample: events failing the core selection can pass a BDT cut plus a tight CVN cut.
  - Different BDT from  $v_{\mu}$  based on the same containment variables used for cuts in the core sample.



# Binning for Sensitivity: $v_{\mu}$ Events

#### Data

Area-normalized MC Shape-only systematics

Wrong-sign



- Data-MC shape agreement good within each quantile.
- By extrapolating each separately, we transport kinematic differences between data and simulation to the FD.
  - Can see this in the different normalizations applied to each quantile.

# **Future Sensitivity: Octant and Maximal Mixing**

- Above 3  $\sigma$  sensitivity to  $\theta_{23}$  maximal mixing outside of the 0.42-0.58 range by 2024.
- Above 3 σ sensitivity for octant determination outside of 0.4-0.6 range by 2024.



#### **Test Beam Program**



- The test beam program is how we will realize those analysis improvements.
  - Reduced systematics
  - Additional validation of ML techniques
  - Simulation improvements
- Installation and commissioning efforts are ongoing
- Full data taking this fall



# Neutral current disappearance



Neutrino beam sample: predict  $188 \pm 13$  (syst.) interactions (38 bkg.), observe 201. Antineutrino beam sample we predict  $69 \pm 8$  (syst.) interactions (16 bkg.), observe 61.

No significant suppression of neutral current interactions observed for neutrinos or antineutrinos



#### **Systematics Reduced with Extrapolation**





# Pulls in the Fit

- A total of 49 systematic parameters were included in the fit.
- Largest pulls mostly correspond to the systematics already called out as most important.
  - Exception: Cherenkov is a part of "Detector Response"
- For systematics affecting both neutrinos and antineutrinos, we see consistent pulls from from both parts of the data.





# **Efficiency for Neutrinos vs. Antineutrinos**





Erica Smith

# **Extrapolation with Resolution Bins**





Erica Smith

# **Extrapolation with Resolution Bins**





# Wrong-sign Constraint with Neutron Capture



- Look for delayed clusters of hits following stopping muons.
- Fit the various time components to measure the rate of neutron captures in bins of neutrino energy.
- Then fit the neutron captures vs. reconstructed energy to extract the number of  $v_{\mu}$  CC and NC events in the neutrino and antineutrino beams.



# Wrong-sign Constraint with Neutron Capture



- Look for delayed clusters of hits following stopping muons.
- Fit the various time components to measure the rate of neutron captures in bins of neutrino energy.
- Then fit the neutron captures vs. reconstructed energy to extract the number of  $v_{\mu}$  CC and NC events in the neutrino and antineutrino beams.



#### What's new with $\overline{v}$ 's? Wrong-sign contamination

- ~10% systematic uncertainty on wrong-sign from flux and cross section
  - Does not include uncertainties from detector effects.



- Confirm using data-driven cross-checks
  - 11% WS in the  $v_{\mu}$  sample checked using neutron captures.
  - 22% WS in beam *v<sub>e</sub>* checked using identified protons and event kinematics.



# **Simulation Tuning**

- We tune our simulation to get a better central value *and* to set systematic uncertainties.
- Beam flux is tuned using the **Package to Predict the FluX** using external data.
  - Minerva, Phys. Rev. D 94, 092005 (2016)
- We tune our cross-section model primarily to account for **nuclear effects**.
  - Backstory: disagreements are seen in cross sections as measured on a single nucleons vs. in more complex nuclei.
  - Nuclear effects are a likely solution, but the theory for them remains incomplete.
  - So, we tune using a combination of **external theory** inputs and our own **ND data**.



Fig: Teppei Katori, "Meson Exchange Current (MEC) Models in Neutrino Interaction Generators" AIP Conf.Proc. 1663 (2015) 030001



# **Tuning the Neutrino Interaction Model**

#### From external theory:

- Valencia RPA model<sup>+</sup> of nuclear charge screening applied to QE.
- Same model applied to resonance.

#### From NOvA ND data:

- 10% increase in non-resonant inelastic scattering (DIS) at high W.
   \* "Model uncertainties for Valencia RPA effect for MINERVA",
- Add MEC interactions
  - Start from Empirical MEC\*
- for MINERVA", Richard Gran, FERMILAB-FN-1030-ND, arXiv:1705.02932
  - "Meson Exchange Current (MEC) Models in Neutrino Interaction Generators", Teppei Katori, NuInt12 Proceedings, arXiv:1304.6014
  - Retune in  $(q_0, |\mathbf{q}|)$  to match ND data
  - Tune separately for  $v/\overline{v}$



Erica Smith



#### **NOvA** Preliminar

# **MEC Uncertainties**

- We also determine uncertainties on the MEC component we introduce.
  - Both on shape and total rate.
- Repeat the tuning procedure with shifts in the Genie model.
  - Turn Genie systematic knobs coherently to push the non-MEC x-sec more QE-like or more RES-like.
- Independently, Minerva\* has also tuned a multi-nucleon component to their data.
- The resulting tune is  $\sim 1\sigma$  away from the NOvA tune.

\*Minerva, Phys. Rev. Lett. 116, 071802 (2016) Minerva, Phys. Rev. Lett. 120, 221805 (2018)



Erica Smith

# **Improved Flux Model**

- Package to Predict the FluX (PPFX) from MINERvA.
  - Based on thin target hadron production data from NA49 and MIPP.
- Significantly reduced systematic uncertainties.
  - Central values also changed within prior systematics, but not shown here.





# **New Flux**





v energy (GeV)

# **Scintillator Model**

- Absorbed and re-emitted Cherenkov light is a small but important component of our scintillator response.
  - Particularly for low-energy protons in hadronic showers.
- Was one of our largest uncertainties, now reduced by an order of magnitude.
  - Previously accounted for with second order terms in our scintillator model.
  - Those terms were unusual, so we placed large systematics.
- Expected energy resolution for  $v_{\mu}$  CC events increased from 7% to 9%.





# New neutron response systematic



- $\vec{v}$ 's have neutrons where v's have protons.
  - Often several hundred MeV of energy.
  - Modeling these fast neutrons is known to be challenging.
- See some discrepancies in an enriched sample of neutron-like prongs.
- New systematic introduced:
  - Scales the amount of deposited energy of some neutrons to cover the low-energy discrepancy.
- Shifts the mean  $v_{\mu}$  energy by 1% in the antineutrino beam and 0.5% in the neutrino beam.
  - Negligible impact was seen on selection efficiencies.





# New neutron response systematic



- $\vec{v}$ 's have neutrons where v's have protons.
  - Often several hundred MeV of energy.
  - Modeling these fast neutrons is known to be challenging.
- See some discrepancies in an enriched sample of neutron-like prongs.
- New systematic introduced:
  - Scales the amount of deposited energy of some neutrons to cover the low-energy discrepancy.
- Shifts the mean  $v_{\mu}$  energy by 1% in the antineutrino beam and 0.5% in the neutrino beam.
  - Negligible impact was seen on selection efficiencies.





#### $v_{a}$ and $\overline{v}_{a}$ Background at the Far Detector



• 14.7 – 15.4 total  $v_e$  background

4.7 – 5.7 total  $\overline{v}_e$  background

- Wrong-sign background depends on the oscillation parameters.
- Largest backgrounds are from real electrons: beam  $v_e/\overline{v}_e$  and wrong-sign.
  - The amount of wrong-sign background varies with the oscillation parameters.
- Most other beam backgrounds contain a  $\pi^0$ .



- A shorter, simpler architecture trained on updated simulation.
- Replaced GENIE truth labels with final state labels.
  - Exploring using final states with protons to constrain WS backgrounds.
- Separate training for the neutrino and antineutrino beams.
  - Wrong-sign treated as signal in training.
  - 14% better efficiency for  $\overline{v}_e$  with a dedicated network.

# **CVN for Antineutrinos**



- A shorter, simpler architecture trained on updated simulation.
- Replaced GENIE truth labels with final state labels.
  - Exploring using final states with protons to constrain WS backgrounds.
- Separate training for the neutrino and antineutrino beams.
  - Wrong-sign treated as signal in training.
  - 14% better efficiency for  $\overline{v}_e$  with a dedicated network.

# NuMI off-axis

- FD located 14 mrad off-axis angle
  - 2-body  $\pi$  decay gives narrow range of v energies
- Tune peak energy for oscillations
  - More events at max oscillations
  - Fewer backgrounds.







- Replace the standard χ<sup>2</sup> with an empirical distribution, F(x | ϑ) = Fraction of N experiments where [ χ<sup>2</sup>(fixed ϑ) χ<sup>2</sup>(best fit) = x ]
  \* Test coverage using
- Pseudo-experiments are generated from the data profile at  $\vartheta$ .
  - i.e. fit all other parameters to data holding  $\vartheta$  fixed at a particular value.
  - This procedure gives proper coverage while minimizing over-coverage.\*
- A point  $\vartheta$  is inside the  $(1-\alpha)$  confidence interval if less than  $(1-\alpha)$  experiments are more extreme than the data.
  - i.e. if the integral of  $F(x | \vartheta)$  up to the observed  $\Delta \chi^2$  at  $\vartheta$  is  $< (1-\alpha)$ .

\* Test coverage using method from: R. L. Berger and D. D. Boos, J. Amer. Statist. Assoc., 89, 1012 (1994)







• All "prior"

- Note: deciding if any individual point  $\vartheta_0$  is outside a CI is equivalent to a hypothesis test where  $H_0$  is  $\vartheta = \vartheta_0$ .
  - The same technique applies to this mass hierarchy hypothesis test.
- Since our best fit is in the NH, we want to know how strongly we reject the IH H<sub>0</sub> is IH and we generate pseudo-experiments at our best fit in the IH.
- Follow the FC procedure with:  $\chi^2$ (fixed  $\vartheta$ )  $\chi^2$ (best fit)  $\rightarrow \chi^2$ (IH)  $\chi^2$  (best fit)
  - If an experiment has a best fit in the IH, then the difference is 0.
  - This pile-up at 0 behaves like a physical boundary: it increases significance.