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Introduction

* How do you do a long baseline neutrino experiment?

* Why does the next generation of experiments need an HPTPC?
* The UK HPTPC prototype

* Beam test at CERN

* Future prospects
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Long baseline neutrino experiments:
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trino OSC|IIat|ons at T2K

vpl disappearance
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* Muon (anti)neutrino disappearance
* Location of dip determined by Am?,;
* Depth of dip determined by sin?(20,;)

 Electron (anti)neutrino appearance
* Leading term depends on sin?(6,;3), sin?(84;)

and Am?,,
* Sub-leading dependance on &6
* Ocp=1/2: fewer neutrinos, more anti-neutrinos
e Ocp =-T/2: more neutrinos, fewer anti-neutrinos

* Matter effects give dependence on mass hierarchy

 Sensitivity dominated by how well you can place the
peaks/dips
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How do we measure neutrino oscillations?

* Apply oscillation effects to Monte Carlo as a function of true E,

* Construct model to predict event rates and distributions at near and far detectors

* Need to ensure experiment can constrain non-oscillation elements of model

* Cross-section model highly dependent on nuclear effects and has large uncertainties
* Important to allow enough uncertainty to mitigate bias in case of incorrect model choice

Cross-section l

Flux Model Model

. Near Detector
Prediction

Interaction rates

Unoscillated Oscillation SVEnE BI:te' and
Monte Carlo Probability Distribution
Model

Far Detector
Detector uncertainties Prediction

Oscillation NeaI(/IDZteICtor FarI\I/DIe’(cje(itor
Parameters oae ode
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Why are neutrino-nucleus interactions hard?

%& * Neutrino energies of interest are O(0.5-10 GeV)

* Depending on momentum transfer (Q2) this energy range covers
" & ~ anything from coherent interaction with nucleus to deep inelastic
) scattering

* Typical ordering is:
— s * Coherent: Interact with whole nucleus
e Quasi-elastic: Interact with a single nucleon (v+n = £+ p)
e 2p2h: Interact with a correlated pair of nucleons quasi-elastically
B e Resonant: Excite a nucleon into a resonance which then decays
1&* * DIS: Interact with quarks inside the nucleon
£

* Reality is a continuous shift between these processes
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Cross-section modelling

* Generators model interactions differently for each
interaction type

* Factorisation:
1. Nuclear initial state
2. Screening of target by rest of nucleus
3. Neutrino-nucleon interaction
4. Final state interactions leaving the nucleus

* Problem: for each type of neutrino-nucleon interaction need differing other
elements, not all of which are consistently described by theory

* Relying on model for E, ;... 2 E, jocco Mapping
* Need to allow enough uncertainty so as not to add bias from incorrect model choice
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Where are we now?

e Current T2K errors are O(6%) largely from cross-section

_ % Errors on predicted event rates, Osc. Parameters as for rates

SK Detector 2.01 2.83 3.80 13.15 1.47
SK FSI+SI+PN
ND280 const. flux & xsec
Eb

o(ve)/o(Ve)
NC1ly
NC Other
Total Systematic Error 5.96
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~Access Tunnel

What do we need for future? |

* Larger successor experiments to T2K/NOvA

e HK: 186 kton fiducial volume (10x SK)
 DUNE: 40 kton fiducial volume

* >1 MW beam power (2x T2K/NOVA design) JM\
/ﬁ

 Starting data taking in mid 2020s

* Aiming for 50 6. observation unless value
is unfavourable

e UK involved in both projects

Height 78m 3
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What uncertainties do we need for DUNE/HK

 Sensitivity studies assume ~2%
total normalisation uncertainty for
V. events

* Implies ~1% error on each of flux,
cross-section, detector effects
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Why a High Pressure Gas TPC?
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Why a High Pressure Gas TPC: Thresholds

* Neutrino cross-section models are tuned
in the regions where we have data

e Qutside these regions there are large

J.Raaf

uncertainties -

* Low energy hadrons travel further from/nsooo;

the interaction point in gas than in

lIlIl‘ltIY L

denser detectors giving a lower threshold

* High pressure plus Mega-Watt beams
gives enough events to do interesting
physics with a gas target
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Why a High Pressure Gas TPC: Target Swapping

e Significant theoretical difficulties in

T ] T T 1 T

. " 4. [+ Argon ]
scaling measurements from one 1000f A, . Neon
nucleus to another cook * Fluorine 5
- N Oxygen
* Gaseous detector can swap out o< T Garbon 5
i & Helium-4 ]

target gas straightforwardly

400 F

* Gives data on different targets in
identical beam at energies of
interest for oscillation experiments

200

-}

TS0 100 150 200 250
Proton Kinetic Energy (MeV)

Reaction Cross Section (mb)
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Traditional TPC Reminder K
A 4
* Particles ionize gas as they travel //
through
e | | —l. -
* lonisation electrons drift through field T Lamplification
cage to an amplification region ( region
* Avalanche in amplification region is # N
read out by charge readout system 55Qcm drift
- < \’ v
] [] Turbo Pum ield Cage ifi
oo B w1 el | Ampliier
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High Pressure: Operating voltages

Magboltz simulation

* Limiting factor on track imaging is A. Deisting

transverse diffusion

 Too much diffusion leads to
signal<detector noise

 Diffusion is a function of E/P
* Higher pressure means higher Voltage

[
(@)
w

— . 5 bar

Ar, 3 bar
Ar, 1.0% CO», 5 bar

—— Ar, 1.0% CO,, 4 bar
— Ar, 1.0% CO», 3 bar

Transverse Diffusion [pm for 1 cm]
S

10% 102 10 10° 100 102
E/P [V/cm/torr]
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High Pressure: Operating voltages

my—r—T—"—"—T T T T

0% CF4
2% CF4
4% CF4 o
10% CF4

* Limiting factor on track imaging is
transverse diffusion

e Too much diffusion leads to | |
signal<detector noise o . v

4 > o 1

e Diffusion is a function of E/P g - ¢ . v -
* Higher pressure means higher Voltage ? ] S v
e Gain in amplification stage is also a : - o . v
function of E/P | _-' o A v

. A

" ..A‘ v? M
1{ gaesl wewm gt 4y v vV .
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High Pressure: Operating voltages

10° ¢

* Limiting factor on track imaging is
transverse diffusion

 Too much diffusion leads to
signal<detector noise

 Diffusion is a function of E/P
* Higher pressure means higher Voltage =

* Gain in amplification stage is also a
function of E/P |

* Breakdown voltage increases § =
linearly with pressure at high | | =X
pressures

10" 10° 10’ 10° 10°
pd [Torr cm]
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UK Prototype: CCD Readout )
A 4
e Avalanche amplification causes *
scintillation light to be given off as well — ........ : 19 m?
as charge signal # amplification
i region
* We use CCD cameras to image
amplification region i
* High granularity readout for much less
cost than pixelated charge readout Y
* Important to choose gas mix to give
enough visible light B cco [ Turbo Pump © 1 Field Cage Amplifier
—— +HV Ground —— -HV —p
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CCD Readout: Getting enough light

* Photons per avalanche electron flattens off
at high voltage

* Some evidence that higher pressures have
less light at high voltage

ph/e

760 torr

1120 torr
1500 torr
1820 torr
2254 torr
2573 torr

014 &

B ¢ Jd O =N

E/P (V/cm.torr)

IEEE, VOL. 48, NO. 3, JUNE 2001
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CCD Readout: Getting enough light

' (a)
n Bon o o B
* Photons per avalanche electron flattens off ] =" " e f. .
at high voltage 1 = o Acr2% N2
] a o Ar100%
* Some evidence that higher pressures have . o Arvio% ooz
less light at high voltage SN TE L
* Adding other gases to improve operational I Tt TV e
stability (fewer sparks) can reduce light 1 2
y|e|d 0.01 e
4" p=750 torr

* Need to find a balance in terms of gas mix

and Working Vo|tage IEEE, VOL. 47, NO. 3, JUNE 2000
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UK Prototype

* Cubic metre pressure vessel rated to 5 barG has been built
1335
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UK Prototype

 TPC formed from 1.2m diameter
steel meshes and copper rings

* Very fine cathode mesh transparent |
to allow cameras to image through it

 Amplification region made up of
three meshes with O(mm) spacing

e Copper rings form field cage for drift )
field uniformity

e \Vessel received Autumn 2017 for
Summer 2018 beam test

Imperial College
London
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Cameras

* Four single photon accurate cameras each
image one quadrant of amplification region

* 9 MP resolution gives sub-mm readout pitch
at amplification region

e Exposure and readout time is O(seconds)
* Need charge readout to do time projection

e Optical feedthrough to pressurized region
through quartz windows

 Cameras don’t have to be in pressurized region

Imperial College
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Data Acquisition (DAQ)

* NIM logic trigger system set up to take
an external beam trigger

e Cameras record the entire beam spill
window

* Each anode mesh read out through a
separate charge integrating pre-
amplifier

* Pulses are collected whenever a signal is

detected coincident with the beam spill
signal

Patrick Dunne 24




DAQ experting ®

* NIM logic trigger system set up to take
an external beam trigger

e Cameras record the entire beam spill
window

* Each anode mesh read out through a
separate charge integrating pre-
amplifier

* Pulses are collected whenever a signal is

detected coincident with the beam spill
signal
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Pressure and voltage control

* Slow control system based on DMTPC detector

* New higher voltage cathode supply required
significant modifications

Patrick Dunne 26




Pressure and voltage control

* Slow control system based on DMTPC detector

* New higher voltage cathode supply required
significant modifications

 Automated pressure control added to system

* Remote actuated valves controlled using networked
power supply

e Able to fill from four separate gases automatically
* Mix controlled by sequential filling to partial pressure

Imperial College
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Gas purity monitoring

* Aachen group tested a gas
purity monitor during beam test

* Two radioactive sources at
known positions are measured
using a wire amplification
system

V4 [um ns?]

e Scanning electric field allows
drift velocity to be measured

e Simulated drift velocity as a
function of field shown

Patrick Dunne
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Beam test

* Tested last August to September at T10
facility at CERN

* T10 beam’s lowest setting is 800 MeV
where it’s mostly made up of pions

* We mainly want to see protons of low
energy O(100 MeV)...

Imperial Colﬁlege
London
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Moderate and go off axis

Absorber; Thickness; Beam P
Plastic; 60 cm; 1.0 GeV
Plastic; 30 cm; 0.8 GeV
Plastic; 15 cm; 0.6 GeV
Plastic; 10 cm; 0.6 GeV
Plastic; 40 cm; 0.8 GeV
Plastic; 35 cm; 0.8 GeV
Plastic; 75 cm; 1.0 GeV

Detector moved along OBA

n/proton ratio
2,

protons
Absorber

T Beam

f beam axis (OBA)

1 . L ) 1 L J_ 1 L 4 y) l L L A 1 l 1 1 L 4 j 1 L L 1 l A y) L 1 l A
0 0.5 1 1.5 2 2.5 3
TPC OA-shift from beam line, m
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Time of Flight Energy Measurement

e Particle species tagging and momentum measurement performed
using time of flight (ToF) system

* |deal system for testing the moderator plus off-axis method

* Surveyed point
e Calculated point

Beam P S3
',t.ﬁ Entra.nce/ actualbeam | [ ] vesse - S4
S2 I —=
ﬁ’




ToF components

e 3 upstream components provided by University of Geneva
* S1 and S2 single pixel fast trigger counters, S1 with 30 ps resolution

» S3 wall with 20 bars of plastic scintillator with 90 ps resolution, prototype for the SHiP
detector

* 1 downstream UCL wall S4 made up of 10 scintillator bars with 1ns resolution

51

52 S3

Trigger:
coincidence

sl T Cie

Size: 168 x 110 cm’
Size:4 x4 cn?’ » 90ps resolution
Patrick Dui  30ps resolution




Early results from Time of Flight: Energy

* MIPs, protons and
deuteron peaks all visible in
data

* Increase in number of
moderator blocks increases
MIP/proton separation

* Proton energy is being
reduced

Patrick Dunne

Events / spill

53 time of flight spectrum (51 trigger only) S Jones
103 ....................... e S e
B : : é é
e MIPs  PRELIMINARY |7 Oblocks
102 : ................... .................. ................... ............ — 1 block
: ' | — protons: . |— 2 blocks
10 B PP S . l ................... ............ 3 blocks

!
N AL MR
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P-pI ratio

* On-axis no moderator p:MIP ratio is
less than 1:10

* After moderation and 3.5° off axis,
ratio of 1:3 is achieved Eoss

Proton/(rt+u) for 1 modetator block
Preliminary

0.15

0.1

0.05

o

n

o
_||||||I|I||||I||||I||||I|||II|||II|||I||||I|||II|

50 600 700 800 600 1000
Time since spill start/ns

1 | A AR
0 300 400

II|IIIII
0 100 200

S. Jones
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Charge readout

* Beam spill structure is seen in the
charge readout system trigger times

. : : . é i my i’reliminary

* Signal amplitude in process of being & °F
calibrated against deposited energy 500}~

e Matching TPC charge and ToF signals  “°F
across different DAQ systems to get 300
species/momentum tagged events 200}~
1005—

0y ~~700" 00800 400 500 600 700 600 900 7000
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Time of TPC charge signals relative to beam signal

(Beam Spill Signal Time - Charge Signal Time) / ms
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Light yield

 Detector had 4 Am-241 calibration sources
at known locations inside

* Light yield in a box around the most visible
source was measured for several gas mixes

* As predicted light yield varies strongly with

qguencher
* Results are for highest voltage achieved in
mix
Patrick Dunne 36

(S-B)/sqrt(B)

PreliminagyEl TR

4 bar Ar:CO2
(98.8:1.2)

4.9 bar Ar:CO2:N2
(96.5:1.9:1.6)

4.9 bar Ar:CO2:N2
(96.8:0.4:2.8)

4.58 bar Ar:CO2:N2
(96.8:0.4:2.8)

4.64 bar Ar:CO2:N2
(96.4:0.8:2.8)

4.64 bar Ar:CO2:N2
(96.4:0.8:2.8)

4 bar Ar

4.01 bar Ar:C0O2
(99:1)

4.02 bar Ar:CO2:N2
(98:1:1)

s
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Sparking

* \Voltage achieved was limited by sparking
along nylon bolts holding amplification
region together

* Tolerance on bolt hole drilling not sufficient
to prevent bare conductors being close

* At high voltages nylon can have conducting
tracks etched into it

* Design will be modified for future iterations
(see later)

Imperial College
London
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Track Reconstruction

* Some tracks seen by eye in CCD images
500

Unblurred Preliminary

i -y x T o o e X
P g 3 oR ar et s &
T -
' v

2000 IR EGE B

* Due to lower than expected voltages most
tracks not passing close to amplification region
hard to pick out by hand

400

300
* Image processing techniques are being used

to try to make them more obvious 200

» Tracks are then reconstructed using TReX oo R B 100

algorithm originally designed for T2K TPCs

0
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Gaussian Convolution

* Most noise is randomly distributed
* No pixel to pixel correlation

* Signal is strongly correlated between
neighbouring pixels

* Convoluting neighbouring pixels into one
another using a Gaussian kernel will therefore
reduce background by more than signal
increasing significance (Wikipedia)

e Analysis underway

Patrick Dunne 39
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https://en.wikipedia.org/wiki/Gaussian_blur

Future Prospects
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D U N E ORIGINAL
R 25% REDUCTION

omton /) RN
* HPTPC is part of the baseline ]

near detector complex for

DUNE LNy s =
* UK prototype can contribute L A |

significantly in preparations [/ 4 -

for this detector i

gopoan ] BEAM @ MID
W ol VOLUME
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DUNE Near Detector HPTPC

* ALICE experiment is upgrading their
TPC during LS2

e DUNE detector will use readout
chambers (ROCs) from ALICE as their
amplification stage

* Two types of ROCs, small inner (IROCs)
and larger outer (OROCs)

* ROCs use wire chamber design
which gives better amplification for
same voltage

Imperial College
London
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UK Prototype tests for DUNE

Iy R )
T

« UK HPTPC prototype is only vessel * :
plus field cage available large enough s I it E

e Detector now back at Royal Holloway
in larger lab ready for upgrade

* Working with DUNE HPgTPC group,
one of the OROCs is being shipped to
London

Patrick Dunne 43




OROC+FNAL beam test

* Test beam facility at Fermilab has

. . =L T EEE e
beamlines suitable for several month run ==
* Beam energy is lower than T10 T - | 2 [
. . L IL"F | ﬁ;—’ I ua-—rﬁr—mﬂiagﬁj_ -
O(200 MeV) so complicated techniques L1 ] |
to reduce energy will not be necessary [ e
. . i =—1500¢ ' . , 1
* Planning for beam test in 2020 s s SRR et M S¥:
o . Imperial College

London



DUNE DAQ

UK involved in building DUNE far detector DAQ
* Imperial working on FPGA based data co-processor

* Unified near/far detector DAQ has many advantages (expertise/spares etc.)
* Involvement in both DAQ and HPTPC should allow us to make this happen

Supernova Buffer

Co-processor

»

WIB .
Cryostat WIB AL
W— PCle board inside a PC

WIB

Imperial College
London
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Summary

* Prototype HPTPC has been constructed
and operated in a beam at CERN

* Analysis of data from CERN underway
* Tracks have been reconstructed
e ToF system has demonstrated that beam
manipulation techniques worked
* Going forward working with DUNE ND

group to carry out further tests aimed
at DUNE detector construction

* |Intend to test in a beam at Fermilab next
year

CERN, RWTH Aachen University, Imperial College,
University College London, Lancaster University,
University of Geneva, Royal Holloway University of
London, University of Warwick
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