

A precise ATLAS measurement of $\sin^2\!\theta_{\rm W}$

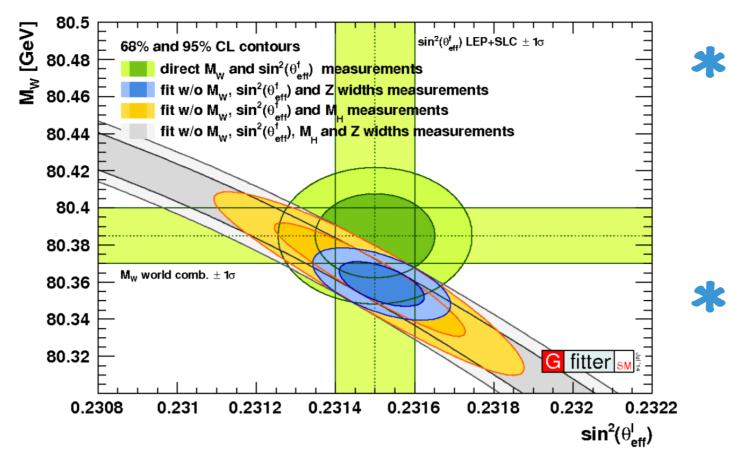
QUEEN MARY UNIVERSITY OF LONDON

March 28th, 2019

SIMONE AMOROSO (DESY)

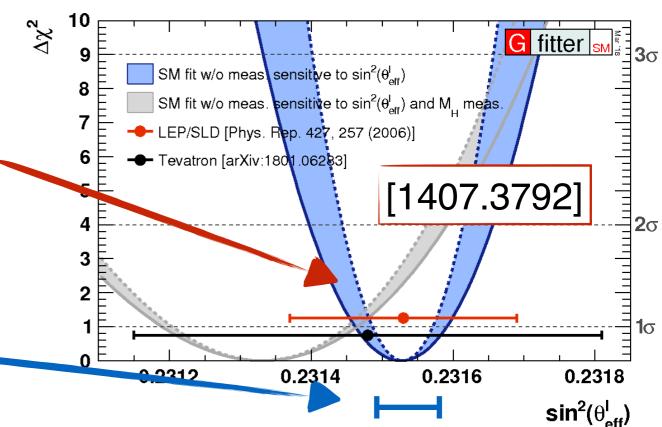
INTRODUCTION

- * The gauge and scalar sectors of the SM is fully determined by four parameters (e.g. α , G_F, M_Z, M_H)
- * All the other parameters can then be related by theory


$$\sin^2 \theta_W = 1 - \frac{M_W^2}{M_Z^2} \quad M_W^2 \sin^2 \theta_W = \frac{\pi \alpha}{\sqrt{2} G_F}$$

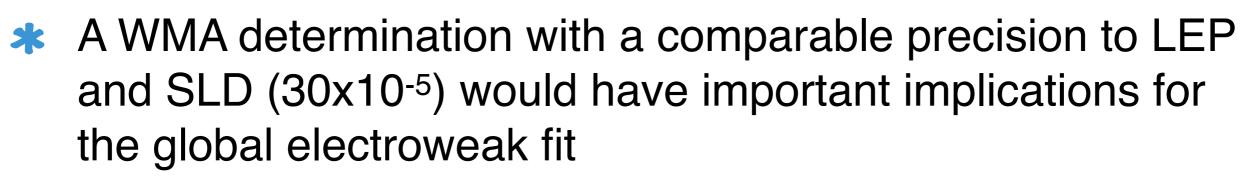
Other SM parameters enter through radiative corrections

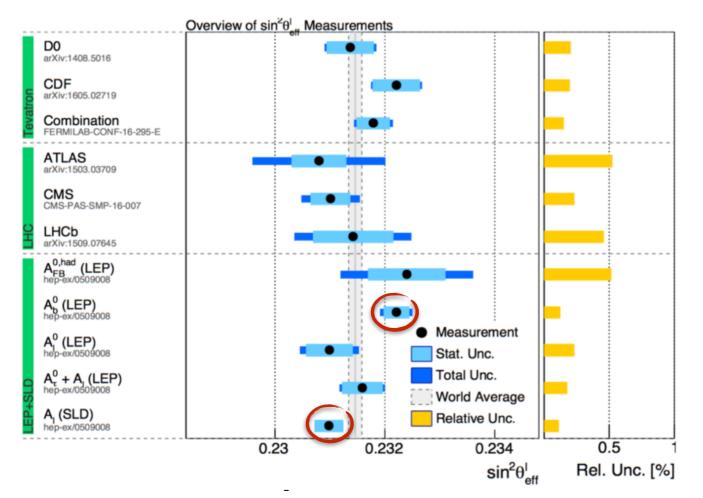
Simultaneous measurements of different quantities allows to over-constrain the SM and test its internal consistency


THE WEAK MIXING ANGLE

3

- Direct measurements have an average precision of ~16x10⁻⁵
- Removing the direct measurements the indirect determination has a precision of ~6x10⁻⁵


- The weak mixing angle in the SM parametrises the mixing between the EM and weak fields
 - And provide and indirect determination of the W-boson mass

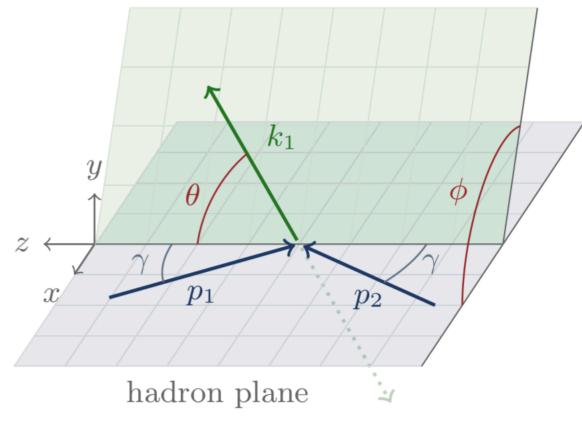


CURRENT MEASUREMENTS

The WMA has been precisely measured at LEP and SLD

- Precision reaching 26 (29) x 10⁻⁵ for LEP (SLD)
- But the two most precise determinations (A_{FB}^{0,b} at LEP and A_I^{LR} at SLD) show a *three sigma tension* with each other
- Several measurements at hadron colliders
 - Tevatron combination reaches uncertainty of 33x10⁻⁵;
 2.6% compatibility of the measurements
 - ATLAS 7 TeV 120x10⁻⁵
 - LHCb 7+8 TeV 106x10⁻⁵
 - CMS 8 TeV 52x10⁻⁵

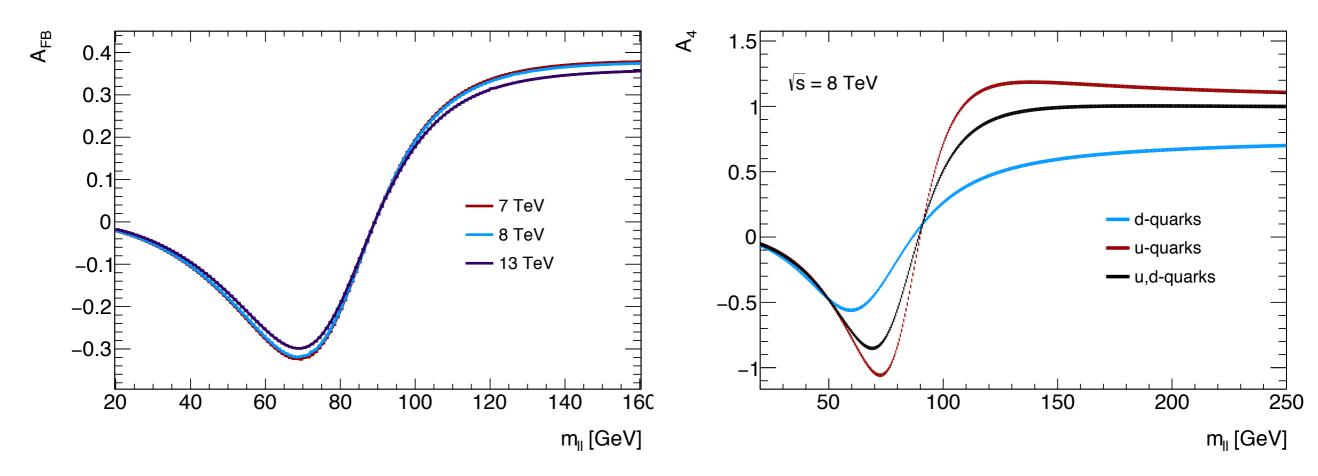
4


HOW TO MEASURE IT

Presence of vector and axial-vector couplings introduces a forward-backward asymmetry. This is a parton-level effect that we measure at proton level

$$A_{\rm FB} = \frac{\mathrm{d}^3 \sigma(\cos\theta^* > 0) - \mathrm{d}^3 \sigma(\cos\theta^* < 0)}{\mathrm{d}^3 \sigma(\cos\theta^* > 0) + \mathrm{d}^3 \sigma(\cos\theta^* < 0)}$$

- Measured using the Collins-Soper frame: Z boson at rest, z-axis bisecting the direction of the initial state protons
- At the LHC this z-axis assignment has a two-fold ambiguity as we don't know which proton the quark came from.
- Choose the z-axis sign as sign of the (lab-frame) z-momentum of the Z boson candidate


THE AI FORMALISM

- The Drell-Yan lepton angular distribution in boson rest frame can be decomposed into nine terms
 - An unpolarised cross-section and nine helicity amplitudes describing the polarisation state of a spin-1 particle

 $\frac{d\sigma}{dp_{T}^{Z} dy^{Z} dm^{Z} d\cos \theta d\phi} = \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_{T}^{Z} dy^{Z} dm^{Z}} \stackrel{unpolarised cross-section}{all coefficients but A_{4} vanish at LO (p_{T}=0)}$ sensitive to QCD $\begin{cases} (1 + \cos^{2} \theta) + \frac{1}{2} A_{0}(1 - 3\cos^{2} \theta) + A_{1} \sin 2\theta \cos \phi \\ + \frac{1}{2} A_{2} \sin^{2} \theta \cos 2\phi + A_{3} \sin \theta \cos \phi + A_{4} \cos \theta \\ small terms \end{cases} + \frac{1}{45} \sin^{2} \theta \sin 2\phi + A_{6} \sin 2\theta \sin \phi + A_{7} \sin \theta \sin \phi \end{cases}.$

- The Ais encapsulate all of the QCD production dynamics
- AFB=3/8 A4 in full phase-space of the decay leptons to all orders in pQCD

PDFS AND DILUTION

- Due to the ambiguity in the direction of the incoming quark there is a significant *dilution effect*, a reduction in the measured asymmetry, which increases with beam energy (more sea-quarks)
 - From events where the antiquark has a higher x than the quark
 - And since A_{FB} for u- and d-quarks are different
 - Also dilution from s-sbar and c-cbar events which have no asymmetry
 - These effects are obviously strongly dependent on the PDFs

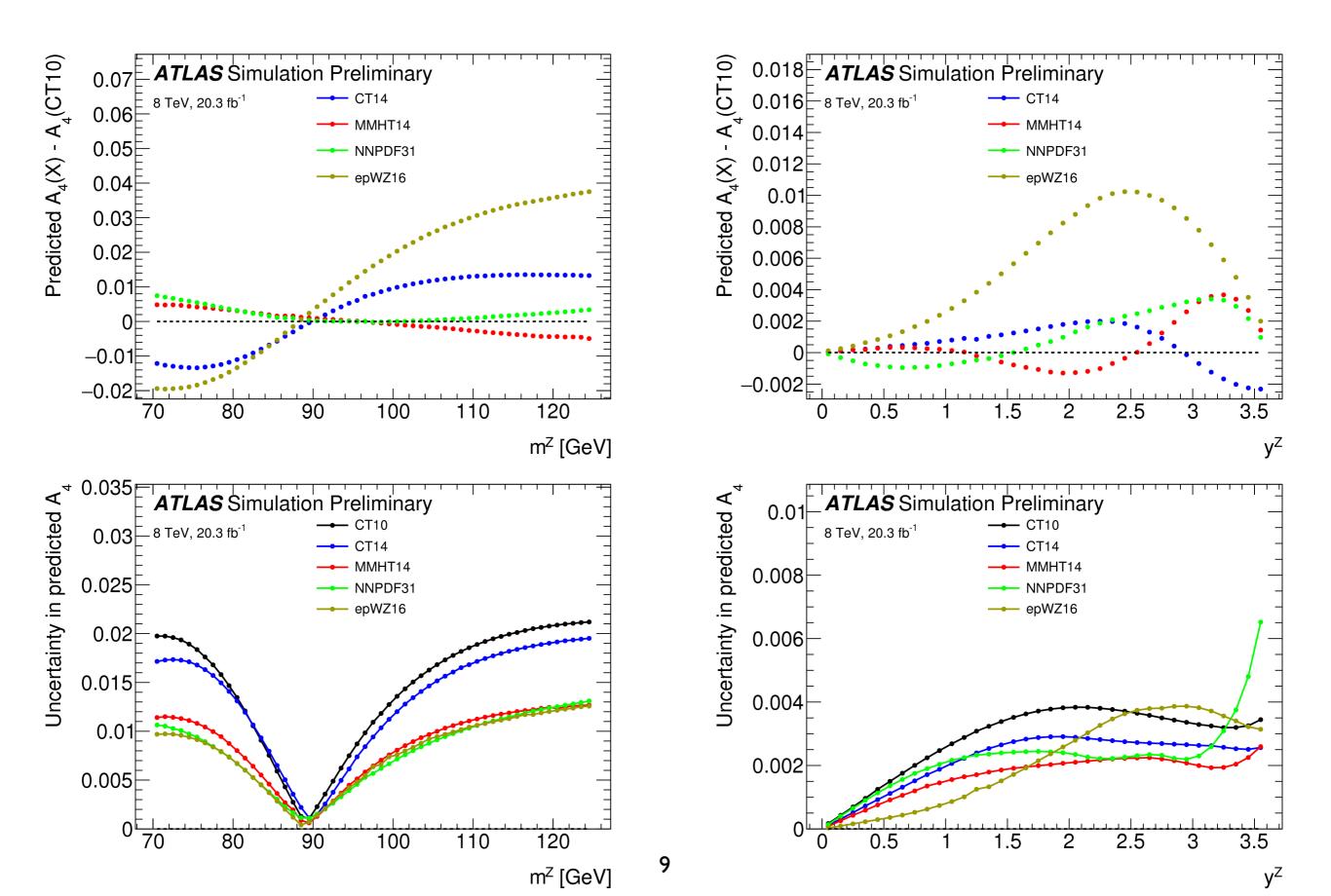
A_{FB} - RAPIDITY

- The AFB and $\sin^2\theta_W$ sensitivity to increases at high Z rapidities ×
- 0.24 A₄(Theory **TLAS** Preliminarv CT10 0.22 8 TeV, 20.2 fb⁻¹ In this region collisions --- CT14 0.2 involve a high-x parton NNPDF3^{*} 0.18 and a low-x parton; the 0.16⊨ high-x parton has high 0.14 change to be a valence 0.12 0.1⊨ quark, and the low-x 0.08 parton the anti-quark 0.06 **Reduced dilution from** 0.04⊨ ambiguity in the sign of 0.02 0^t the z-axis

0.5

1.5

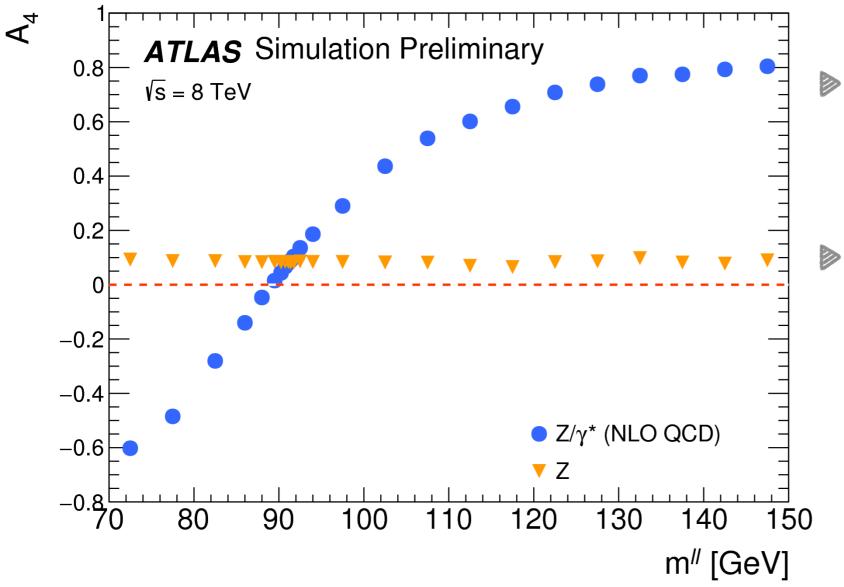
2


2.5

3.5

|y"|

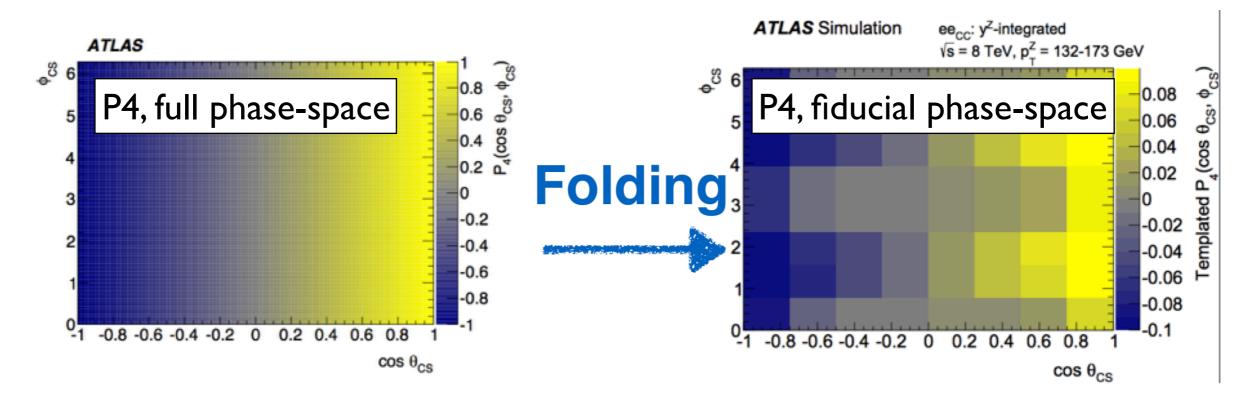
3


PDF SENSITIVITY

AFB - MASS DEPENDENCE

★ The A_{FB} (shown here for A4) has a strong dependence on m_{II}

- Driven by the interference between the Z and γ^* contribution
- The contribution to A_{FB} from the weak mixing angle is small and constant


- Most of the sensitivity to $sin^2\theta_W$ is coming from the peak region
- Can use the mass dependence to constrain PDFs (see later)

ATLAS 8TEV MEASUREMENTS

- ATLAS has published two measurements of Drell-Yan production at 8 TeV sensitive to the weak mixing angle:
- [1710.05167] A measurement of triple differential fiducial cross-sections performed over a wide range of dilepton mass, rapidity and lepton polar angle in the CS frame
 - Exploit the full cross-section information, although the primary sensitivity to $\sin^2\theta_W$ is in A_{FB}
- Image: [1606.00689] Measurement of the angular coefficients in Z-boson events using electron and muon pairs from data taken at sqrt(s) = 8 TeV with the ATLAS detector
 - Reduced sensitivity to uncertainties from extrapolation
 - Possibly more sensitive than A_{FB} to NLO EW effect that break the harmonic decompositions

THE AI MEASUREMENT

- Three leptonic channels (ee^{CC}, ee^{CF}, $\mu\mu^{CC}$) and 12 analysis bins: m_z = [70, 80, 100, 125], y_z = [0, 0.8, 1.6, 2.5, 3.6]
- * For a given point in lepton kinematics the fiducial lepton selections (p_T^z , m^z , y^z) map 1 1 in $\cos\theta$, ϕ
- Use MC to fold analytical acceptance within the analysis bins to detector level
- Fit the reconstructed angular distributions with the folded polynomials to obtain A_{0-7} and σ^{U+L} (8 $\cos\theta^* x 8\phi$ bins)

BACKGROUNDS

Very small amount of backgrounds 0.1% for CC, 2% for CF at the pole

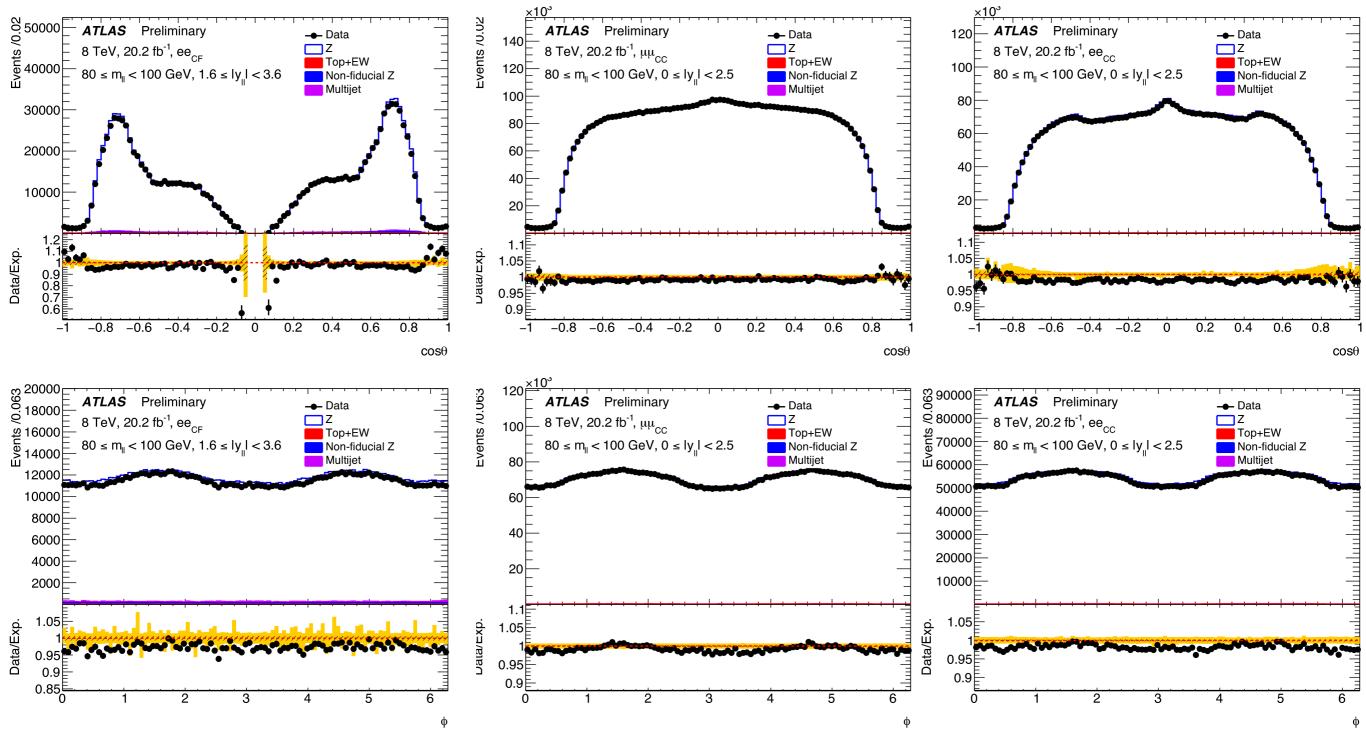
W+jets and multijets from data

Templates reverting ID criteria fitted to isolation variables

EW and ttbar from MC

- Non fiducial signal also from MC
 Events outside of the fiducial
 - phase-space, entering through migration effects

		80 < m	$a_{ll} < 100 \text{ Ge}$	
$ y_{ll} $	Data	Top+EW	Multijets	Non-fiducial Z
1.6-2.5	702 142	0.001	0.010	0.017
2.5-3.6	441 104	0.001	0.011	0.013

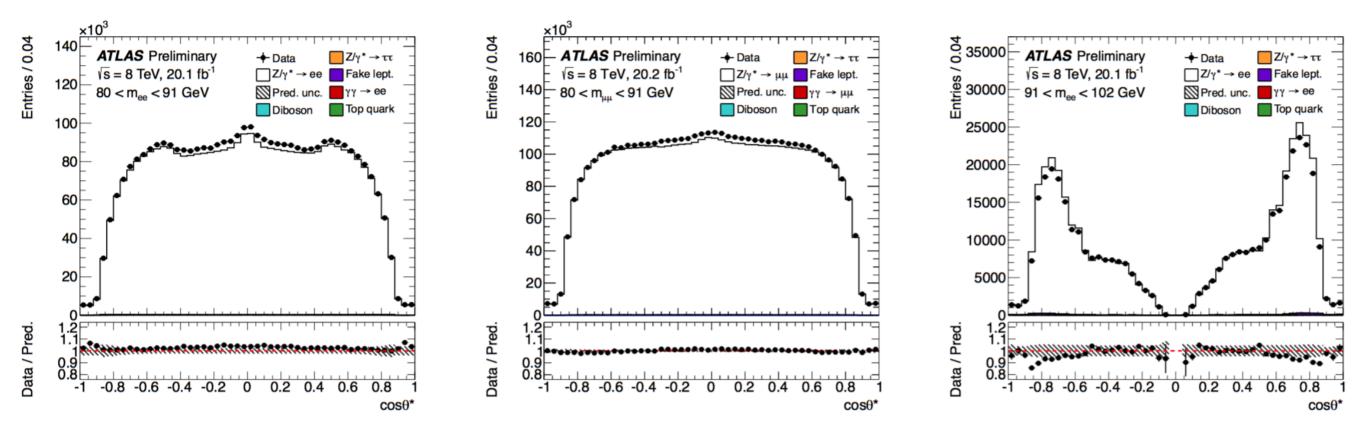

		$70 < m_{ll} < 80 \mathrm{GeV}$								
	$ y_{ll} $	Data	Top+EW	Multijets	Non-fiducial Z					
S	0-0.8	106 718	0.023	0.015	0.010					
	0.8-1.6	95 814	0.015	0.020	0.010					
)	1.6-2.5	47 078	0.012	0.041	0.009					
			$80 < m_l$	$_l < 100 \text{ GeV}$	7					
	$ y_{ll} $	Data	Top+EW	Multijets	Non-fiducial Z					
	0-0.8	2 697 316	0.003	0.001	< 0.001					
	0.8-1.6	$2\ 084\ 856$	0.002	0.001	< 0.001					
	1.6-2.5	839 424	0.002	0.002	< 0.001					
			100 < m	$_{ll} < 125 { m GeV}$	V					
	$ y_{ll} $	Data	Top+EW	Multijets	Non-fiducial Z					
	0-0.8	106 855	0.034	0.016	0.023					
	0.8-1.6	80 403	0.025	0.019	0.027					
	1.6-2.5	28 805	0.015	0.025	0.029					

μμCC

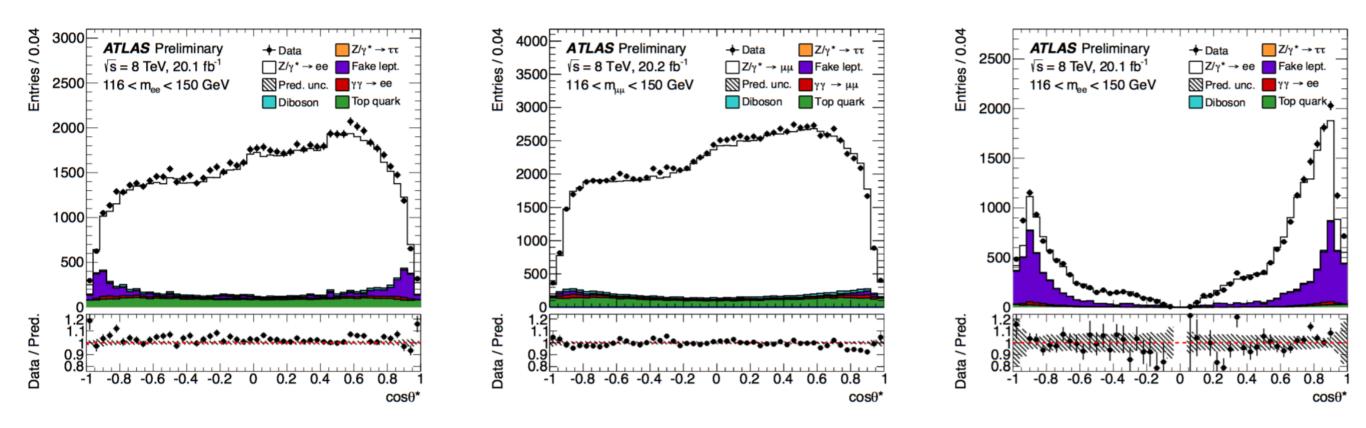
		$70 < m_{ll} < 80 { m ~GeV}$						
	$ y_{ll} $	Data	Top+EW	Multijets	Non-fiducial Z			
	0-0.8	124 050	0.019	0.017	0.009			
	0.8-1.6	137 984	0.015	0.014	0.014			
	1.6-2.5	74 976	0.010	0.011	0.019			
			$80 < m_l$	$_l < 100 { m GeV}$	7			
	$ y_{ll} $	Data	Top+EW	Multijets	Non-fiducial Z			
-	0-0.8	2 866 016	0.002	0.001	< 0.001			
	0.8-1.6	2 948 371	0.002	0.001	< 0.001			
	1.6 - 2.5	1 314 890	0.002	0.001	< 0.001			
			100 < m	$_{ll} < 125 \text{ GeV}$	V			
	$ y_{ll} $	Data	Top+EW	Multijets	Non-fiducial Z			
	0-0.8	119 650	0.030	0.023	0.023			
	0.8-1.6	122 775	0.020	0.015	0.023			
	1.6-2.5	55 886	0.010	0.005	0.022			

13

DATA/MC AGREEMENT



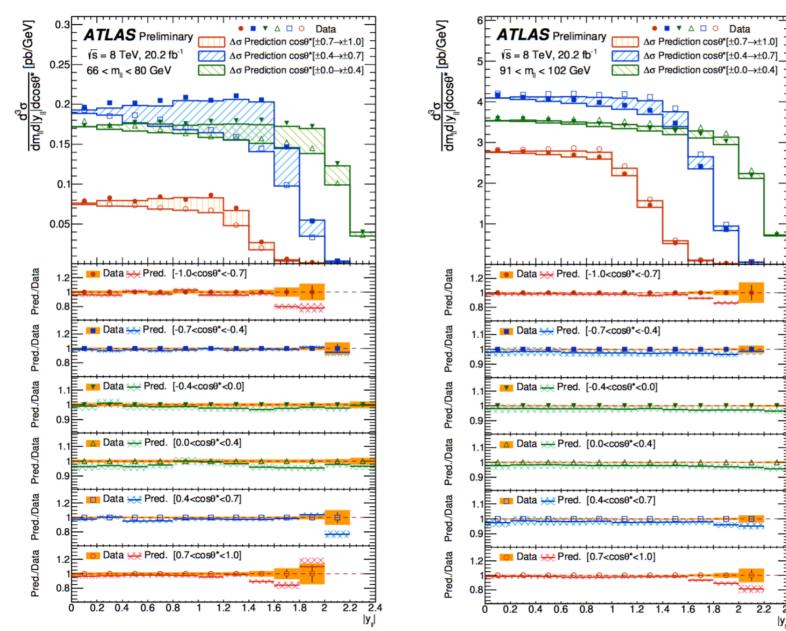
THE Z3D MEASUREMENT


- ★ Measurement performed using central lηl<2.4, p_T > 20 GeV electrons and muons in seven 46 GeV < m_{II} < 200 GeV, twelve y_{II}<2.4 and six cosθ* bins (2x504 in total)</p>
- * Extended using one central (p_T >25 geV) and one forward electron $|\eta|>2.5$, $p_T>20$ GeV in five 66 GeV < m_{\parallel} <150 GeV bins, five 1.2 < y_{\parallel} < 3.6 and six cos θ^* bins (150 in total)
- Powheg+Pythia8 with CT10 PDFs and with NNLO QCD and NLO EW k-factors used as signal model

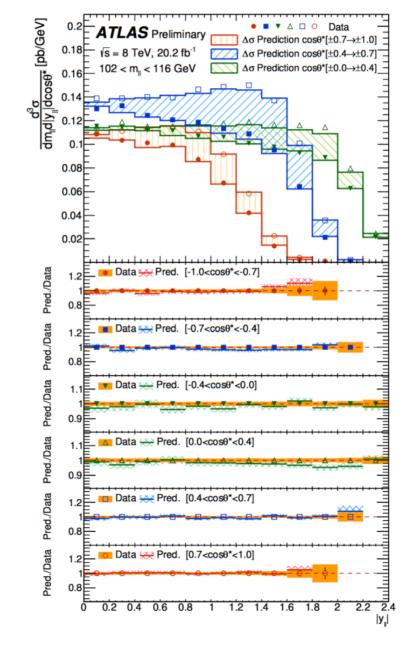
AT THE PEAK

- Z-peak bins (80 GeV < m_{II} < 91 geV and 91 GeV < m_{II} < 102 GeV) are symmetric in and almost background free for both central-central (CC) and central-forward (CF) selections</p>
 - ▶ CF selection extends result not only in y_{\parallel} but also in $\cos\theta^*$
- Systematic uncertainties dominated by lepton efficiencies (<0.5%), energy scale and resolution (~1%) and charge dependent biases in the muon momentum reconstruction (~1%)

ABOVE THE PEAK

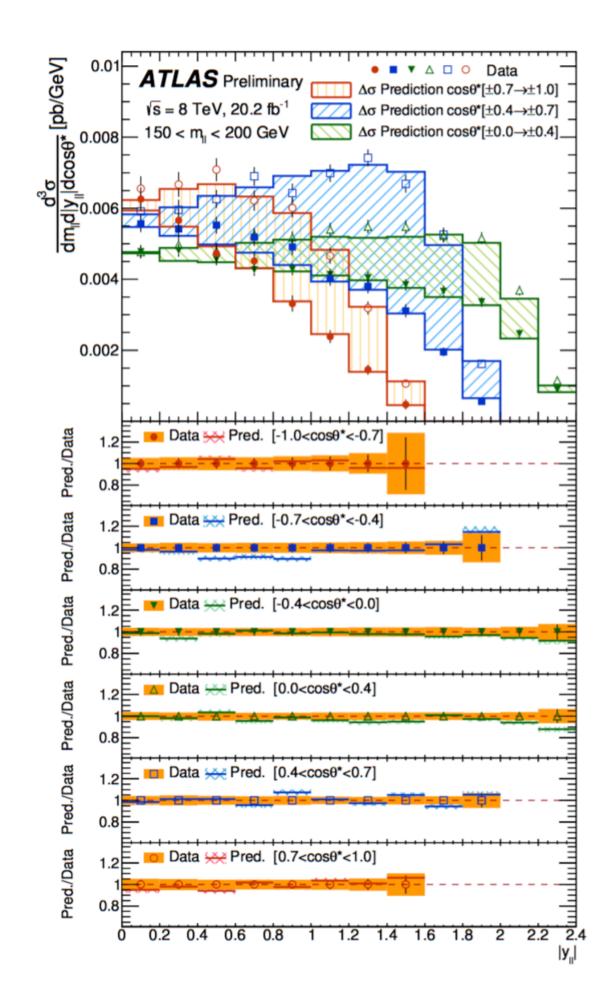


- Above the Z-peak the Forward-Backward asymmetry develops
- Backgrounds from top quark and multi jet production become sizeable (particularly for CF electrons).
 - ▶ But mostly charge-symmetric, they cancel in the A_{FB}
- Leading uncertainties are from the background subtraction and the energy resolution for the forward electrons


Z3D - RESULTS

m_{ll}~m_Z

$m_{\parallel} > m_{Z}$

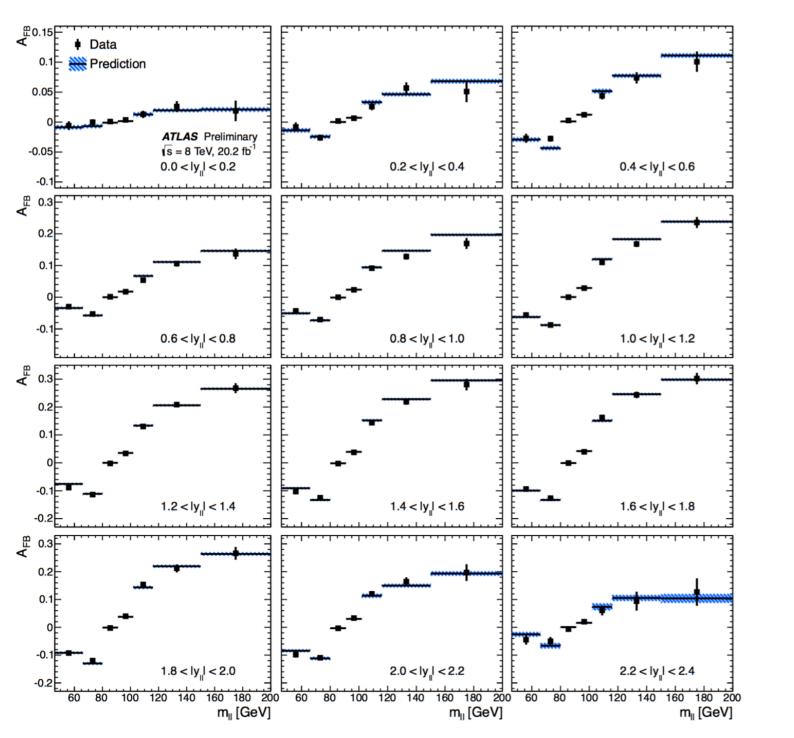


\Rightarrow Difference between $\pm \cos\theta^*$ originates the A_{FB}

2.4

|y.,|

The asymmetry flips sign above the Z-peak and increases at large values of m_{ll}

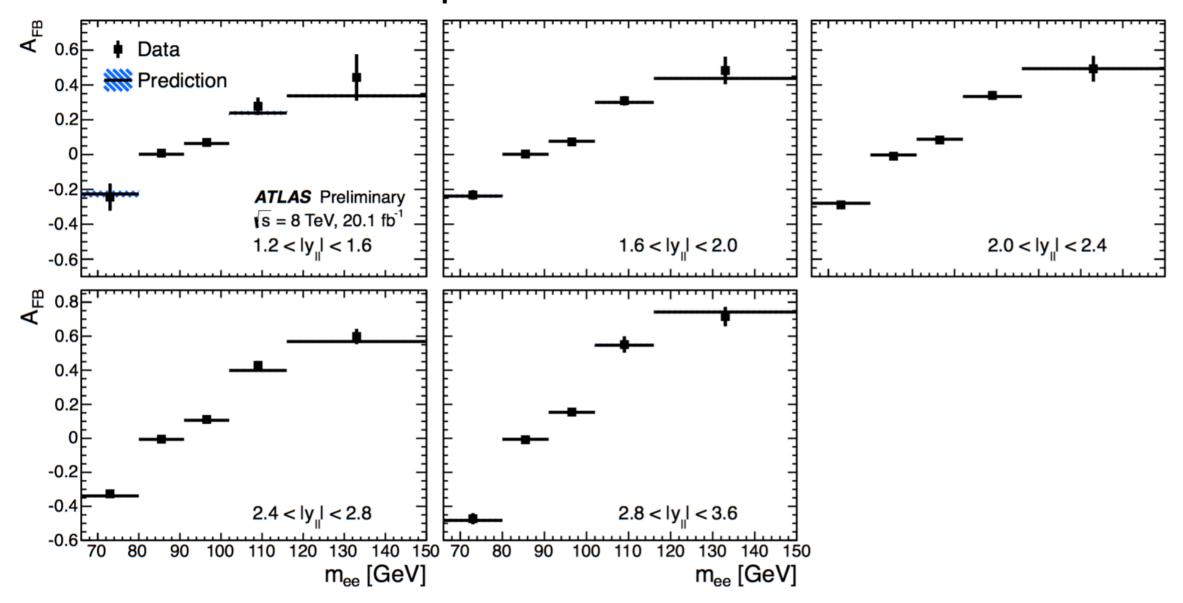

Z3D - RESULTS

- * The combination of the electron and muon channels gives a good $\chi^2/ndf = 489.4/451$
- The accuracy of the measurement reaches 0.5% precision in the Z-peak region for ly_{II}l<1.4</p>
- Overall a good
 agreement with the
 Powheg based prediction

AFB - CC

From the cross-sections, the A_{FB} can be built as:

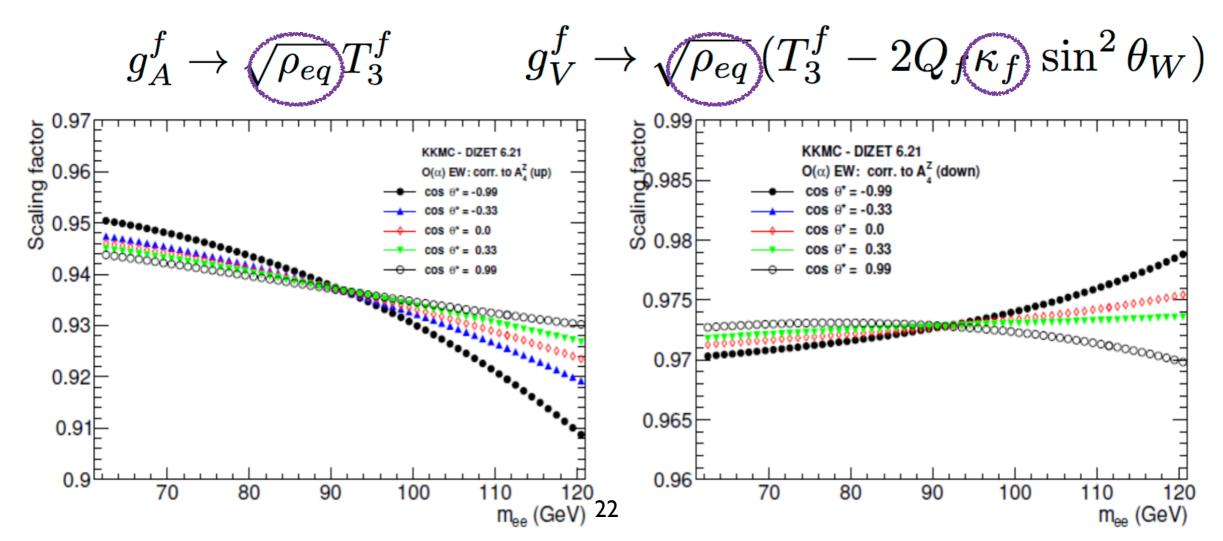
$$A_{\rm FB} = \frac{{\rm d}^3 \sigma(\cos\theta^*>0) - {\rm d}^3 \sigma(\cos\theta^*<0)}{{\rm d}^3 \sigma(\cos\theta^*>0) + {\rm d}^3 \sigma(\cos\theta^*<0)}$$



Uncertainties
 symmetric in cosθ*
 mostly cancel
 (lepton scales and resolution)

Asymmetry increases with increasing rapidity, flattening in the last bins due to reduced acceptance

AFB - CF

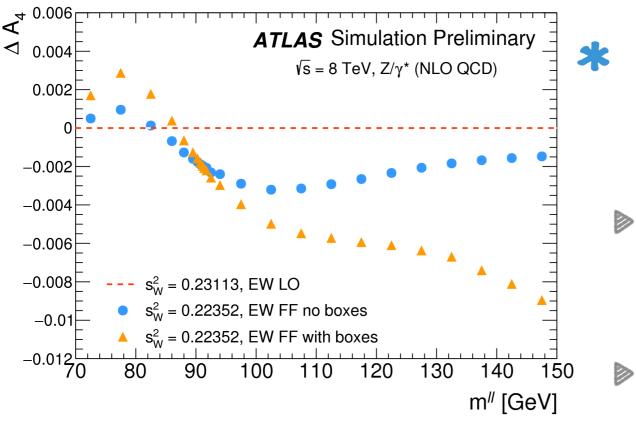

For the CF channel cancellation of uncertainties is even more important

- Measured A_{FB} from -0.2 to +0.5 at lowest y_{II} to -0.4 to +0.7 at the highest y_{II}
- Good agreement with the Powheg based prediction

EW CORRECTIONS

- Electroweak corrections do not alter significantly the Born-level interpretation
 - Loop and vertex EW virtual corrections can be incorporated into complex multiplicative form-factors which change the couplings
 - Tabulated using DIZET library (same used at LEP/Tevatron) in the onshell scheme and for massless fermions (so they only depend on the charge and weak isospin of the fermion)

τηε Ιβα

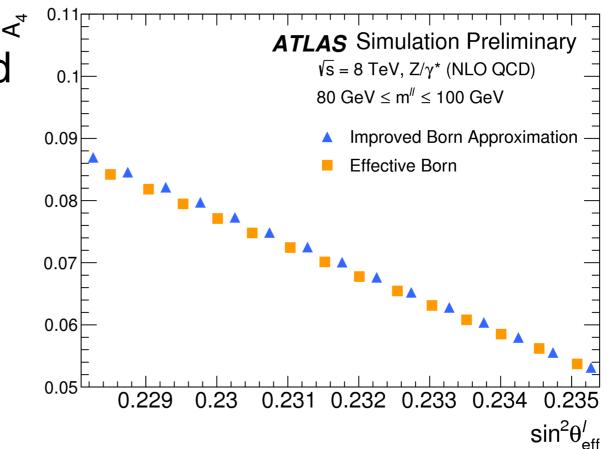

- The form factors can be applied as function of (s, t) into any calculation for the Drell-Yan process, leading to the so called *improved Born approximation* (IBA)
- * Can then relate the measurement of the effective mixing angle to the on-shell angle as: $\sin^2 \theta_{\text{eff}}^{\text{lept}} = \text{Re}[\kappa_e(m_Z^2)] \sin^2 \theta_W$
- * $sin^2\theta_W(on-shell)$ is a constant but $sin^2\theta_{eff}(m_{\parallel}, f)$ is not
- In the on-shell scheme the LO relation between the mixing angle and the vector boson masses is promoted to all orders 20 1 M^2 M^2 a measurement of sin²0w is an indirect

$$\sin^2 \theta_W = 1 - M_W^2 / M_Z^2$$

a measurement of $sin^2\theta_W$ is an indirect measurement of the W mass

$$\operatorname{SM}(\sin^2 \theta_W) \stackrel{\text{EWK}}{\longmapsto} \sin^2 \theta_{\text{eff}}(s) \stackrel{\text{QCD}}{\longleftrightarrow} A_4(s),$$

EW CORRECTIONS IMPACT



Impact of EW form-factors on A4 compared to Powheg LO EW with and without including box diagrams

Box diagrams potentially break the factorisation assumption of the Ai decomposition

But impact is small around the Z-pole

- Variations of sin²θ^I_{eff} implemented as small of Z-boson vector couplings around PDG value
 - Overall uncertainty on the EW corrections is taken as 3x10⁻⁵, including parametric uncertainties and uncertainties on IFI/ISR effects

A4 PREDICTIONS - QCD+EW

	$70 < m^{\ell \ell} < 80 \mathrm{GeV}$			$80 < m^{\ell \ell} < 100 \text{ GeV}$			$100 < m^{\ell \ell} < 125 \text{ GeV}$			
$-y^{\ell\ell}-$	0 - 0.8	0.8 - 1.6	1.6 - 2.5	0 - 0.8	0.8 - 1.6	1.6 - 2.5	2.5 - 3.6	0 - 0.8	0.8 - 1.6	1.6 - 2.5
Central value (NNLO QCD)	-0.0870	-0.2907	-0.5970	0.0144	0.0471	0.0928	0.1464	0.1045	0.3444	0.6807
ΔA_4 (NNLO - NLO QCD)	0.0003	0.0010	0.0021	-0.0001	-0.0005	-0.0009	-0.0015	-0.0007	-0.0022	-0.0041
ΔA_4 (EW)	0.0008	0.0028	0.0056	0.0002	0.0007	0.0015	0.0026	-0.0008	-0.0026	-0.0048
$\Delta \sin^2 \theta_{\rm eff}^{\ell}$ (EW)	0.00129	0.00130	0.00133	0.00024	0.00024	0.00025	0.00026	-0.00120	-0.00123	-0.00119
	Uncertainties		Uncertainties			Uncertainties				
Total	0.0035	0.0094	0.0137	0.0007	0.0017	0.0021	0.0021	0.0040	0.0102	0.0140
PDF	0.0034	0.0092	0.0127	0.0007	0.0016	0.0020	0.0019	0.0039	0.0100	0.0131
QCD scales	0.0006	0.0019	0.0052	0.0003	0.0003	0.0004	0.0008	0.0005	0.0022	0.0049

Predictions are obtained at NNLO in QCD using DYTURBO, an optimised version of DYNNLO/DYRES

PDF eigenvectors also computed at NNLO

EW corrections implemented using EW weights and IBA

- The $\sin^2 \theta_{\text{eff}}$ dependence of A4 is determined in each bin by fitting A4 = a + b $\sin^2 \theta_{\text{eff}}^{\text{l}}$
- ★ Impact of EW corrections is found to be ~24 10⁻⁵ in the pole region, when compared to LO EW with $\sin^2\theta_{\text{eff}}=0.23152$

A4 MEASUREMENT - SENSITIVITY

$m^{\ell\ell}~({ m GeV})$	70 - 80			80 - 100			100 - 125			
$-y^{\ell\ell}-$	0 - 0.8	0.8 - 1.6	1.6 - 2.5	0 - 0.8	0.8 - 1.6	1.6 - 2.5	2.5 - 3.6	0 - 0.8	0.8 - 1.6	1.6 - 2.5
Prediction (MMHT14)	-0.0870	-0.2907	-0.5970	0.0144	0.0471	0.0928	0.1464	0.1045	0.3444	0.6807
	Uncertainties				Uncert	ainties			Uncertaintie	s
Total	0.0176	0.0202	0.0404	0.0015	0.0015	0.0025	0.0044	0.0083	0.0098	0.0230
Stat.	0.0153	0.0164	0.0333	0.0013	0.0013	0.0021	0.0036	0.0072	0.0078	0.0188
Syst.	0.0087	0.0117	0.0229	0.0007	0.0008	0.0013	0.0025	0.0041	0.0060	0.0133
PDF (meas.)	0.0013	0.0049	0.0048	0.0001	0.0002	0.0004	0.0007	0.0007	0.0016	0.0043
${}^{Z}_{p_{\mathrm{T}}}$ modelling	0.0002	0.0004	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.0001	< 0.0001	0.0002
Leptons	0.0023	0.0059	0.0118	0.0002	0.0001	0.0003	0.0007	0.0014	0.0037	0.0070
Background	0.0004	0.0011	0.0064	< 0.0001	< 0.0001	< 0.0001	0.0001	0.0004	0.0017	0.0031
MC stat.	0.0082	0.0088	0.0179	0.0007	0.0007	0.0012	0.0023	0.0038	0.0041	0.0100

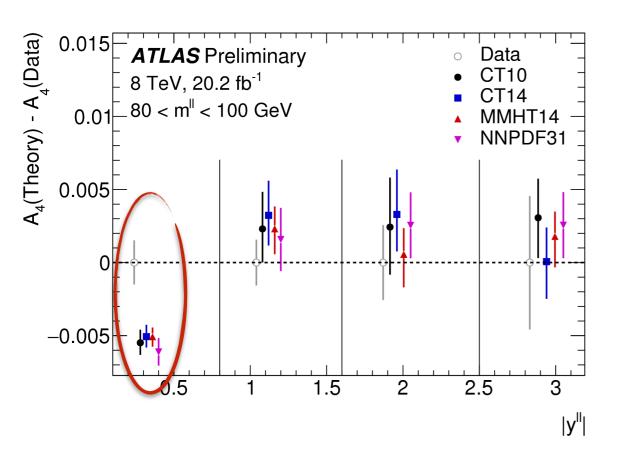
- Expected uncertainties on the measured A4 at the pole
- Consistent with the published Ai paper
- Dominated by statistical uncertainties
 - Both in the data and in the Monte Carlo
- PDF uncertainties on the measurement are small
 - Much smaller than the PDF uncertainties in the predictions, which are decorrelated

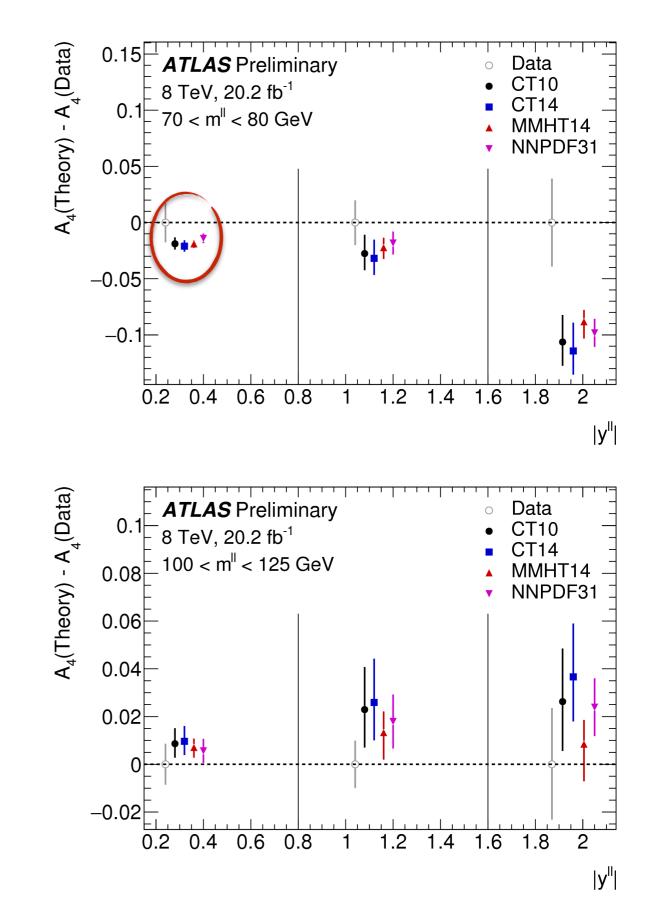
$\sin^2 \theta_{\rm eff}$ measurement - Sensitivity

Channel	ee_{CC}	$\mu\mu_{CC}$	ee_{CF}	$ee_{CC} + \mu\mu_{CC}$	$ee_{CC} + \mu\mu_{CC} + ee_{CF}$
Total	65	59	42	48	34
Stat.	47	39	29	30	21
Syst.	45	44	31	37	27
			Uncerta	ainties in measure	ments
PDF (meas.)	7	7	7	7	4
p_{T}^Z modelling	< 1	< 1	1	< 1	< 1
Lepton scale	5	4	6	3	3
Lepton resolution	3	1	3	1	2
Lepton efficiency	1	1	1	1	1
Electron charge misidentification	< 1	0	< 1	< 1	< 1
Muon sagitta bias	0	4	0	2	1
Background	1	1	1	1	1
MC. stat.	25	22	18	16	12
	Uncertainties in predictions				
PDF (predictions)	36	37	21	32	22
QCD scales	5	5	9	4	6
EW corrections	3	3	3	3	3

- Total uncertainty at the level of 34 10⁻⁵
- * CF uncertainty smaller than the combined $ee+\mu\mu CC$
- Dominant uncertainty from PDFs: 20 10⁻⁵ after profiling
- Next large uncertainty from limited MC stat: 12 10⁻⁵

A4 MEASUREMENT - CHECKS

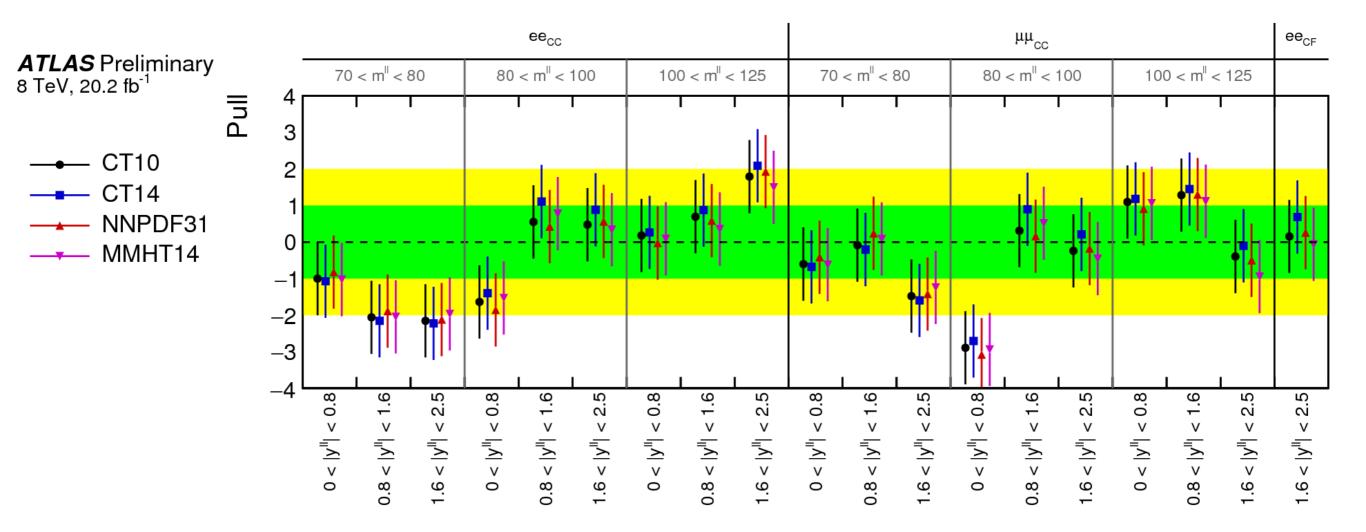

	$70 < m^{\ell\ell} < 80 \text{ GeV}$		$80 < m^{\ell\ell} \ < 100 \ {\rm GeV}$			$100 < m^{\ell \ell} < 125 { m ~GeV}$			
$-y^{\ell\ell}-$	0 - 0.8	0.8 - 1.6	1.6 - 2.5	0 - 0.8	0.8 - 1.6	1.6 - 2.5	0 - 0.8	0.8 - 1.6	1.6 - 2.5
ΔA_4	0.012	0.067	0.065	-0.003	-0.001	-0.006	0.011	0.013	-0.086
	Uncertainties		Uncertainties			Uncertainties			
Total	0.034	0.039	0.078	0.003	0.003	0.007	0.017	0.019	0.045
Stat.	0.030	0.034	0.067	0.003	0.003	0.006	0.015	0.016	0.038
Syst.	0.017	0.021	0.040	0.001	0.001	0.003	0.008	0.010	0.024
PDF (meas.)	0.001	0.003	0.005	< 0.001	< 0.001	< 0.001	0.001	0.001	0.001
Leptons	0.005	0.010	0.016	< 0.001	< 0.001	< 0.001	0.002	0.007	0.012
Background	0.001	0.002	0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.004
MC stat.	0.016	0.018	0.036	0.001	0.001	0.003	0.008	0.008	0.020


- Test of the compatibility of the measured A4 between the eeCC and μμCC for all of the measurement bins
- The p-value of the test is good, of about 34%
- One bin of the eeCF channel overlaps with eeCC, and in this bin they are found to be compatible

A4 MEASUREMENT - CHECKS

29

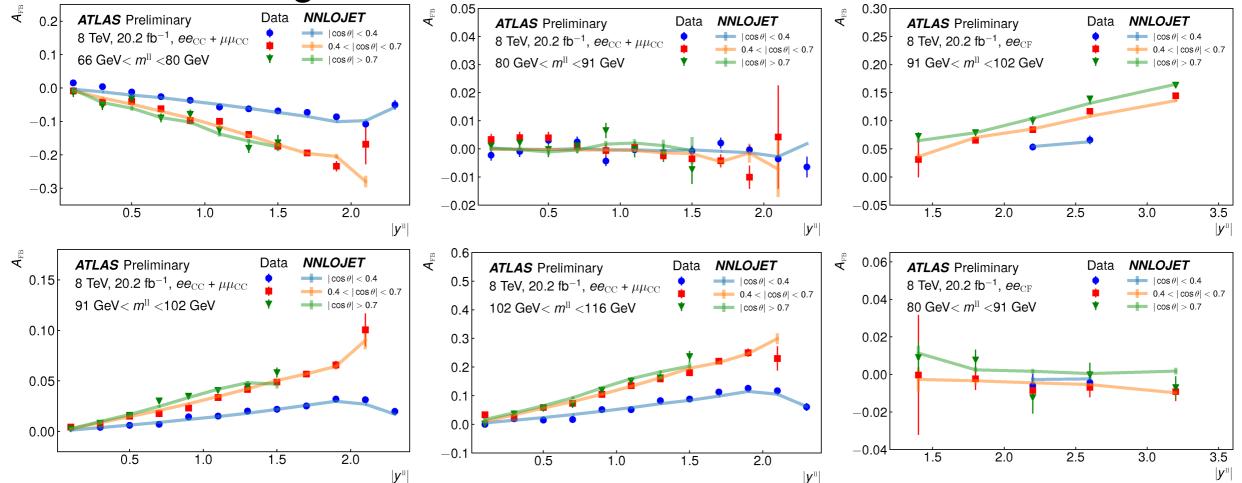
- When looking at the combined measured A4 we see tension between data and predictions in two regions
 - At high boson rapidities below the Z-peak
 - At central rapidities in the Z-peak region



$\sin^2 \theta_{\rm eff}$ measurement - Checks

Tested difference	$ee_{CC} - \mu\mu_{CC}$	$ee_{CC} - ee_{CF}$	$\mu\mu_{CC} - ee_{CF}$	$ee_{CF} - (ee_{CC} + \mu\mu_{CC})$				
$\Delta \sin^2 \theta_{ m eff}^\ell$	44	-7	-51	-32				
	Uncertainties							
Total	72	70	64	57				
Stat.	62	56	50	42				
Syst.	37	41	40	38				

- Test of the compatibility of the extracted sin² θ^I_{eff} in all of the measurement bins (19 measurements)
- Most stringent test is the CC/CF compatibility
 - At the level of 50 10⁻⁵ compared to the 30 10⁻⁵ expected sensitivity of the combined measurement
- Results are satisfactory for all channels

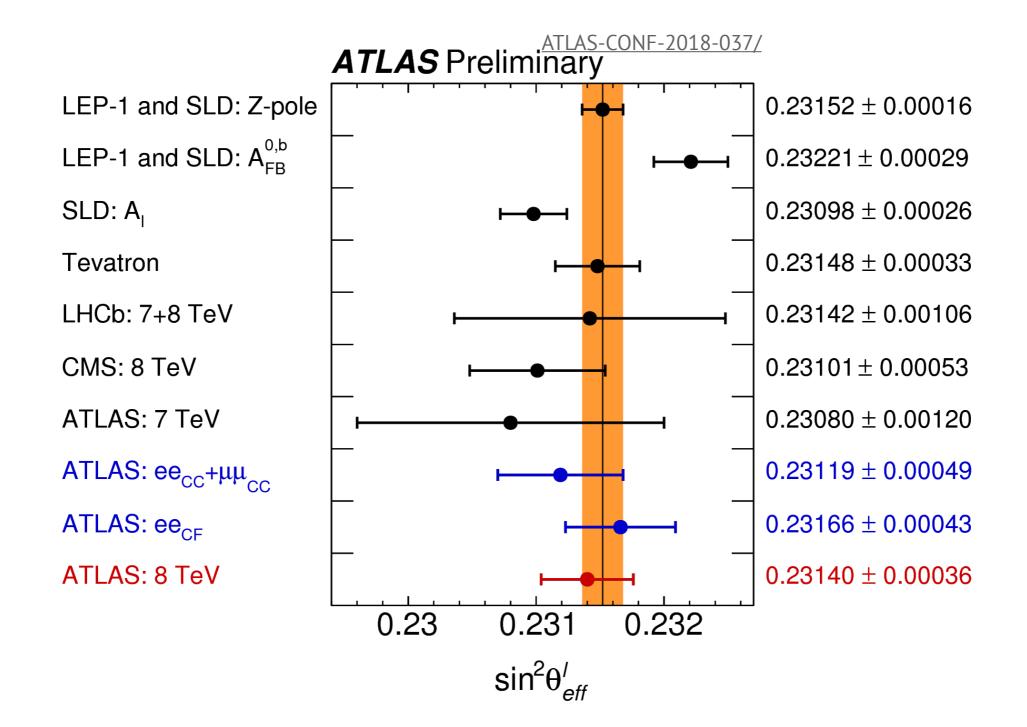

$\sin^2 \theta_{\rm eff}$ measurement - Checks

- Test of the compatibility of the extracted sin² θ^I_{eff} in all of the measurement bins (19 measurements)
- Overall fit p-value is only 3.4%
 - 3σ pulls from low y_{II} μμCC channel

$\sin^2 \theta_{eff}$ measurement - Z3D extraction

- A final compatibility test is performed extracting sin²θ^I_{eff}
 from the Z3D published measurement
 - All bins are converted to A_{FB}(m_{II},y_{II},cos)
 - NNLOJET is used for QCD NNLO predictions
 - EW effects incorporated with weights as in the Ai analysis
- Final result has very similar sensitivity to sin²θ^I_{eff} which is found in agreement to within 10 10⁻⁵

RESULTS


	CT10	CT14	MMHT14	NNPDF31					
$\sin^2 heta_{ ext{eff}}^\ell$	0.23118	0.23141	0.23140	0.23146					
	Ur	Uncertainties in measurements							
Total	39	37	36	38					
Stat.	21	21	21	21					
Syst.	32	31	29	31					

The fit using MMHT14 provides the best result

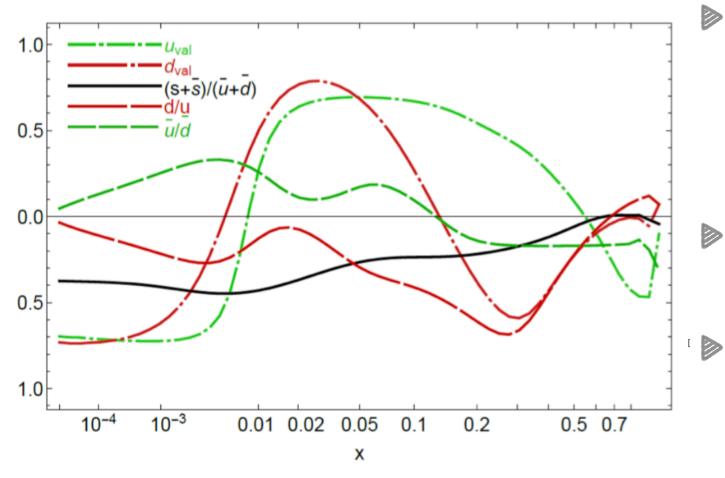
- Best fit p-value and smallest uncertainties
- Results are similar for CT14 and NNPDF31, but the uncertainty on is slightly larger
- CT10 is also included as providing the best description of our 7 TeV precise W and Z cross-sections
 - And used for our 7 TeV m_W measurement

RESULTS

 $\sin^2\theta_{eff} = 0.23101 \pm 0.00021$ (stat) ± 0.00016 (syst) ± 0.00024 (PDF)

NEXT STEPS

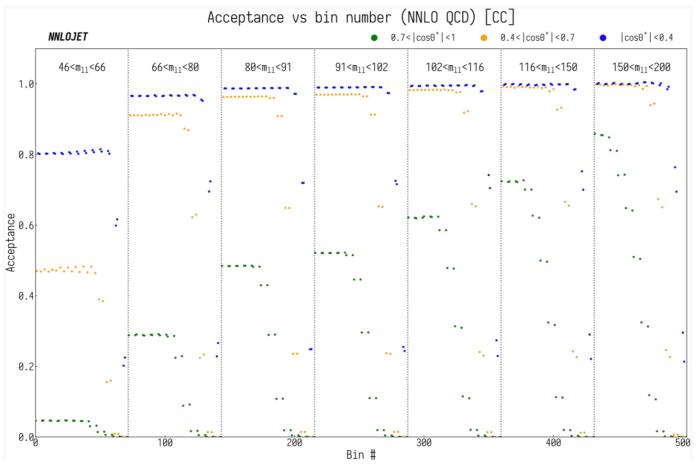
- The ATLAS 8 TeV sin²θ^I_{eff} (preliminary) result reaches an outstanding precision, but few unsatisfactory points remain:
 - Few bins show tensions between data and predictions
 - Sin²θ^I_{eff} extracted with the CT10 PDF is outside of the nominal PDF uncertainty band
 - Are the LEP legacy codes (and approximations) for estimating EW effects under control?
- * We are currently working towards our legacy Run1 $sin^2 \theta^{I}_{eff}$ measurement improving on all of those issues
- Joint effort of ATLAS CMS, LHCb and theory steered by the LHCEWKWG


THEORY BENCHMARKING

- EW form-factor approach now benchmarked against other tools: Powheg-EWK and MCSANC
 - Results found in remarkable agreement among codes
- * Moved from DIZET v6.21 to v6.42 with more complete two-loop corrections and updated to the newest parametrisation for $\Delta \alpha_{had}(M_Z)$
 - Expect a shift of order 10 10⁻⁵ on $sin^2 \theta^{I}_{eff}$
- Yet to be quantified that QED ISR and IFI effects are truly negligible
- The DYTURBO predictions have also been benchmarked against NNLOJET
 - Some inconsistencies found, but their effect on sin²θ^I_{eff} is expected to be small

PDF PROFILING

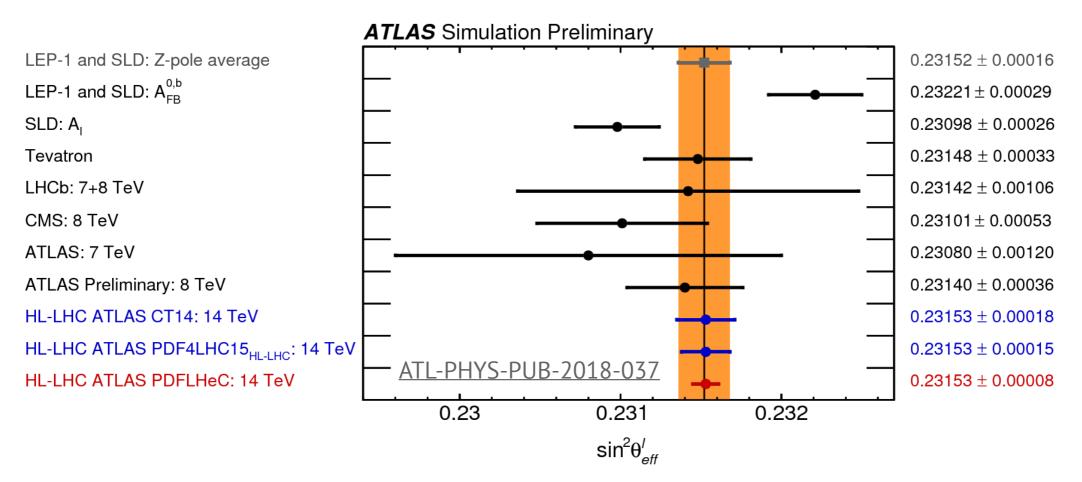
Following the release of our result, the CT group evaluated the correlations of the sin²θ^I_{eff} measurement with the CT14 NNLO PDFs


Correlation, sinθ_w (ATLAS 8 TeV CB) and f(x,Q) at Q=81.45 GeV 2018/11/11, PRELIMINARY, CT14 NNLO

- Taking as input the $\sin^2\theta_{eff}$ extracted with the 56 CT14 error PDFs and the CT parametrisation
- Strongest correlation with u_{val} , d_{val} at x~0.01-0.2
- Weaker correlation with ū, *d*, gluon and sea PDFs

Mostly aligning with our naive expectations

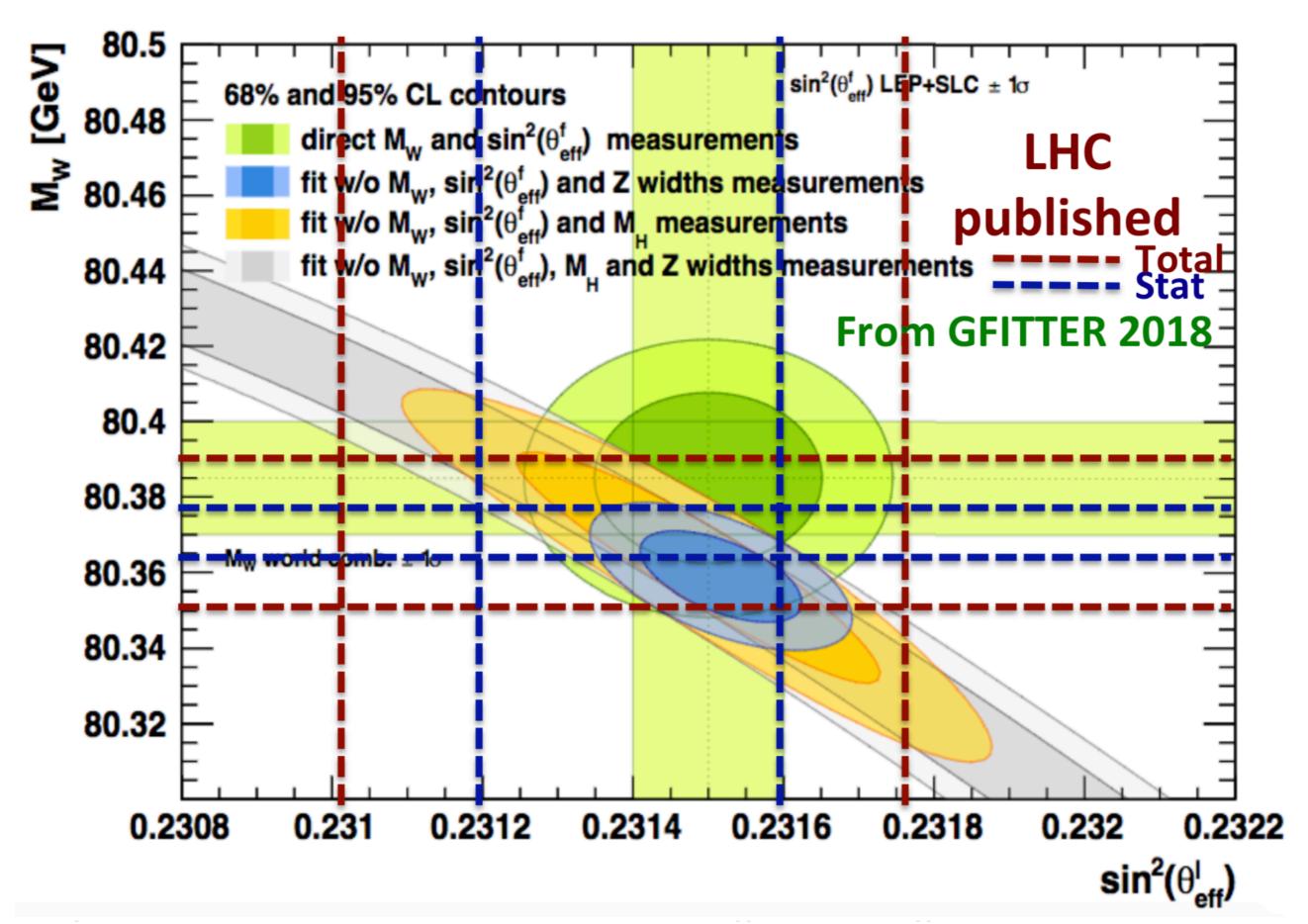
CAN WE DO BETTER?



- Acceptance, A=σ_{fid}/σ_{tot} calculated with NNLOJET at NNLO shows strong variations vs m_{II}, y_{II} cosθ* for the Z3D bins
 (bin number = 72i_m+12i_y+i_{cosθ*})
- * More than 50% of the bins with low $\cos\theta^*$ and $m_{\parallel} > 66$ GeV have A > 95%
- Can restrict the usage of cross-sections in the fit to the bins with high acceptance

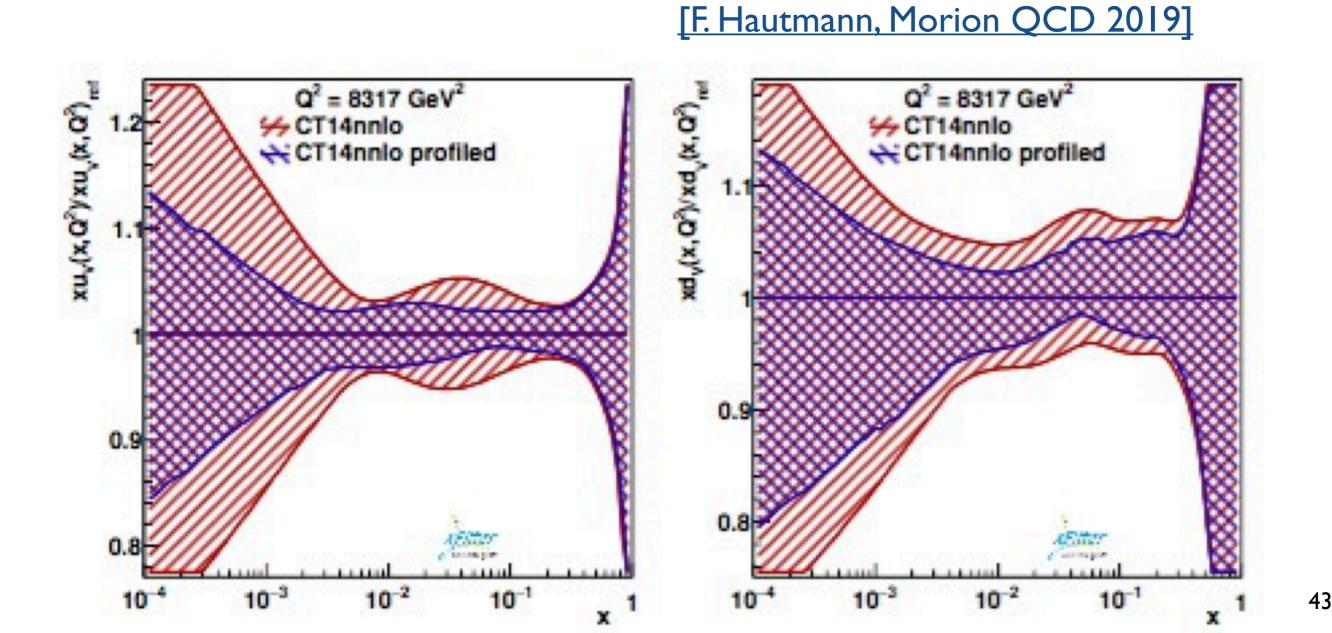
HL-LHC PROSPECTS

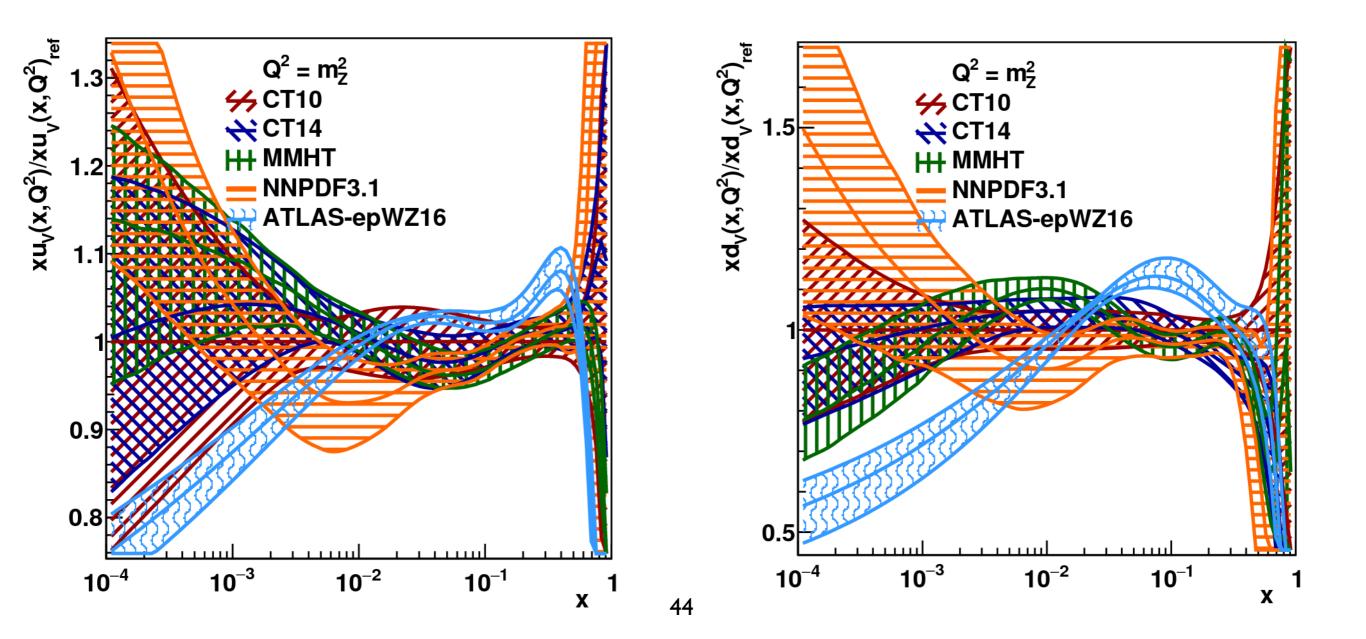
For the HL-LHC Yellow Report we prepared few projections


- Increase in energy enhances dilution effects
- But increased acceptance for forward electron
- A total uncertainty of 18 10⁻⁵ is expected (with in-situ profiling), fully dominated by the uncertainty on PDFs (17 10⁻⁵)
 - Experimental uncertainty at the level of 4 10-5

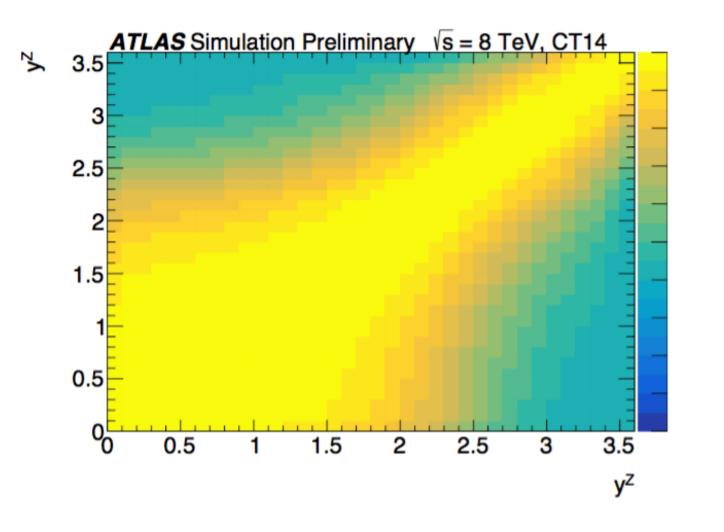
SUMMARY

- Presented a preliminary ATLAS measurement of sin² θ¹_{W,eff} with the 8 TeV pp collision data, reaching a precision of 36 10⁻⁵
 - Using a full phase-space measurement of the angular coefficients
- The final ATLAS 8TeV measurement of sin²θ_W from the Ai and Z3D may reach an overall sensitivity of about 30 10⁻⁵
 - After the W-mass it would be another ATLAS milestone
- Measurement dominated by the PDF uncertainty
 - The many ad-hoc choices used in PDF fits start to show up at this level of precision (as was the case for the W-mass)
- Before pursuing further measurements of such kind crucial to develop a precise prescription to asses PDF uncertainties
 - Studies to evaluate PDF correlations ongoing in the LHCEWWKG
 - A combined QCD+EW fit to Drell-Yan data restricted to high-acceptance fiducial cross-section might allow to keep the PDF uncertainties under control


SUMMARY

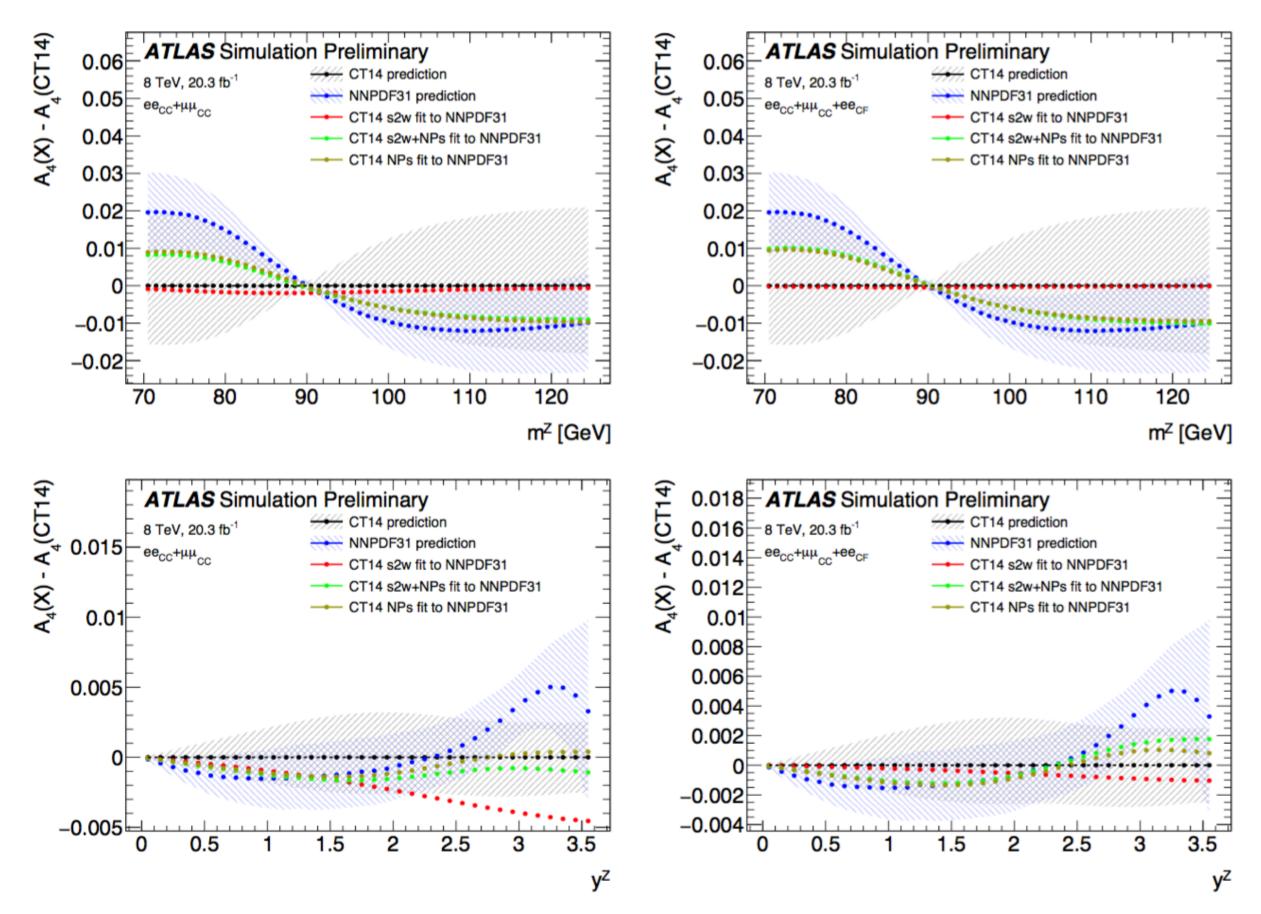

BACKUP

PDFs: CAN WE DD BETTER?


✤ How are PDFs constrained if fitting them to A_{FB} data?

PDF SENSITIVITY

PDF CORRELATIONS

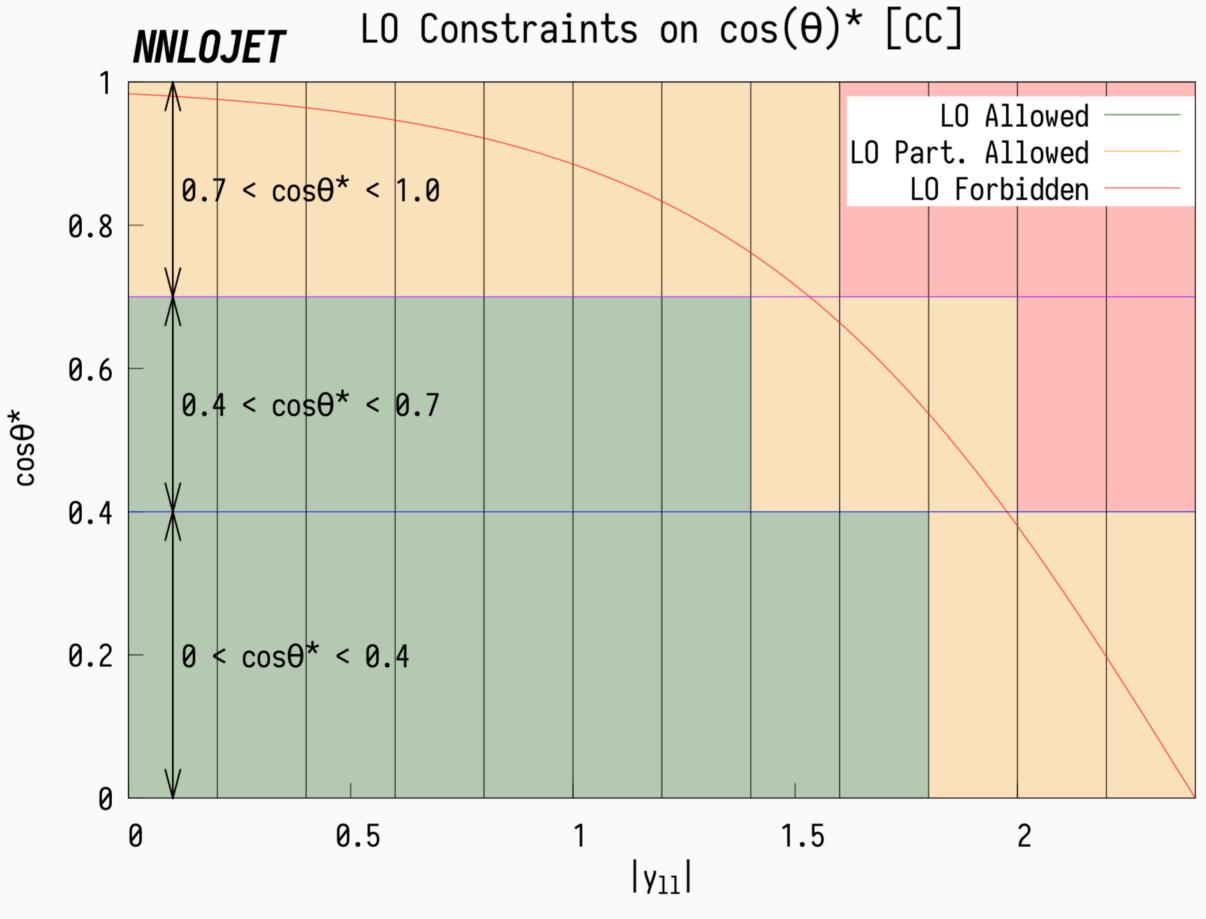

- Interesting structures in the correlation between the predicted A₄/A_{FB} and the boson rapidity
 - Strong and positive among neighbouring yZ, become negative for distant yZ bins
- Experimental measurements are binned in m_{ll} and y_{ll}
- * The predicted pattern of correlations plays an important role in the PDF uncertainty in extractions of the weak mixing angle
 - Already exploited by the CMS 8 TeV measurement

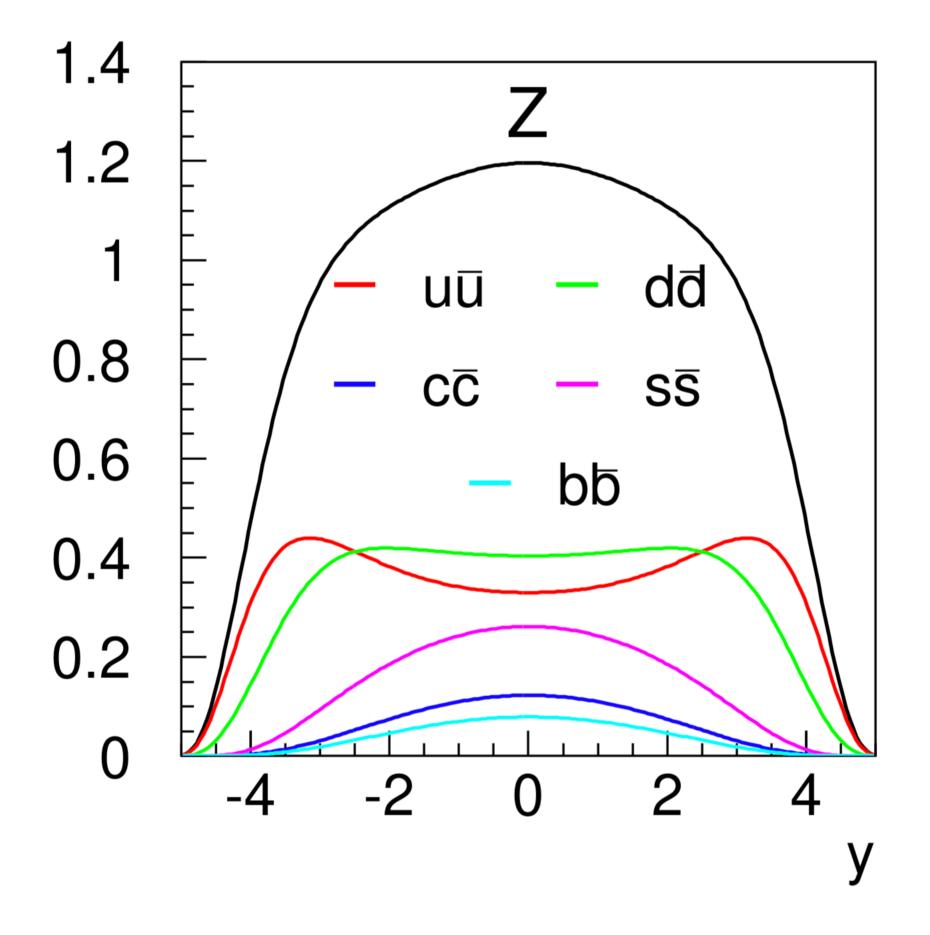
PDF SENSITIVITY ESTIMATES

- The impact of PDF uncertainties on the weak mixing angle measurement is estimated by testing the effect of using a given PDF set in the measurement while fitting pseudo data generated with a different PDF set
- Including only statistical uncertainties in the fit

Generated	PDFs used for interpretation of A4 versus $\sin^2 \theta_W$									
pseudodata	Before PDF constraint				After PDF constraint					
	CT10	CT14	MMHT14	NNPDF31	epWZ16	CT10	CT14	MMHT14	NNPDF31	epWZ16
CT10	-	33	-8.	-7	130	-	-18	22	17	-52
CT14	-33	-	-42	-41	98	27	-	44	39	-36
MMHT14	9	41	-	2	137	-29	-35	-	-4	-70
NNPDF31	8	40	-1	-	136	-16	-28	8	-	-53
epWZ16	-139	-103	-148	-148	-	87	44	93	86	-

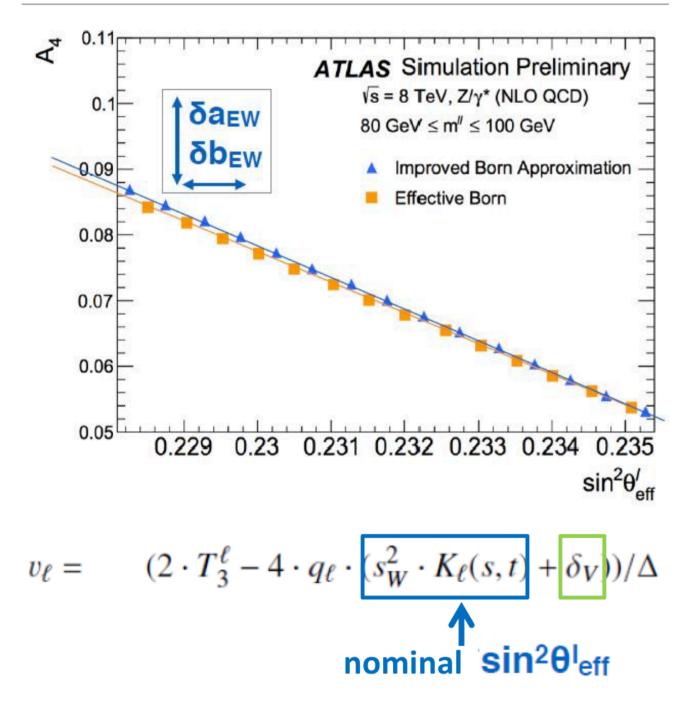
PDF SENSITIVITY ESTIMATES


(29) (43)


PROJECTIONS

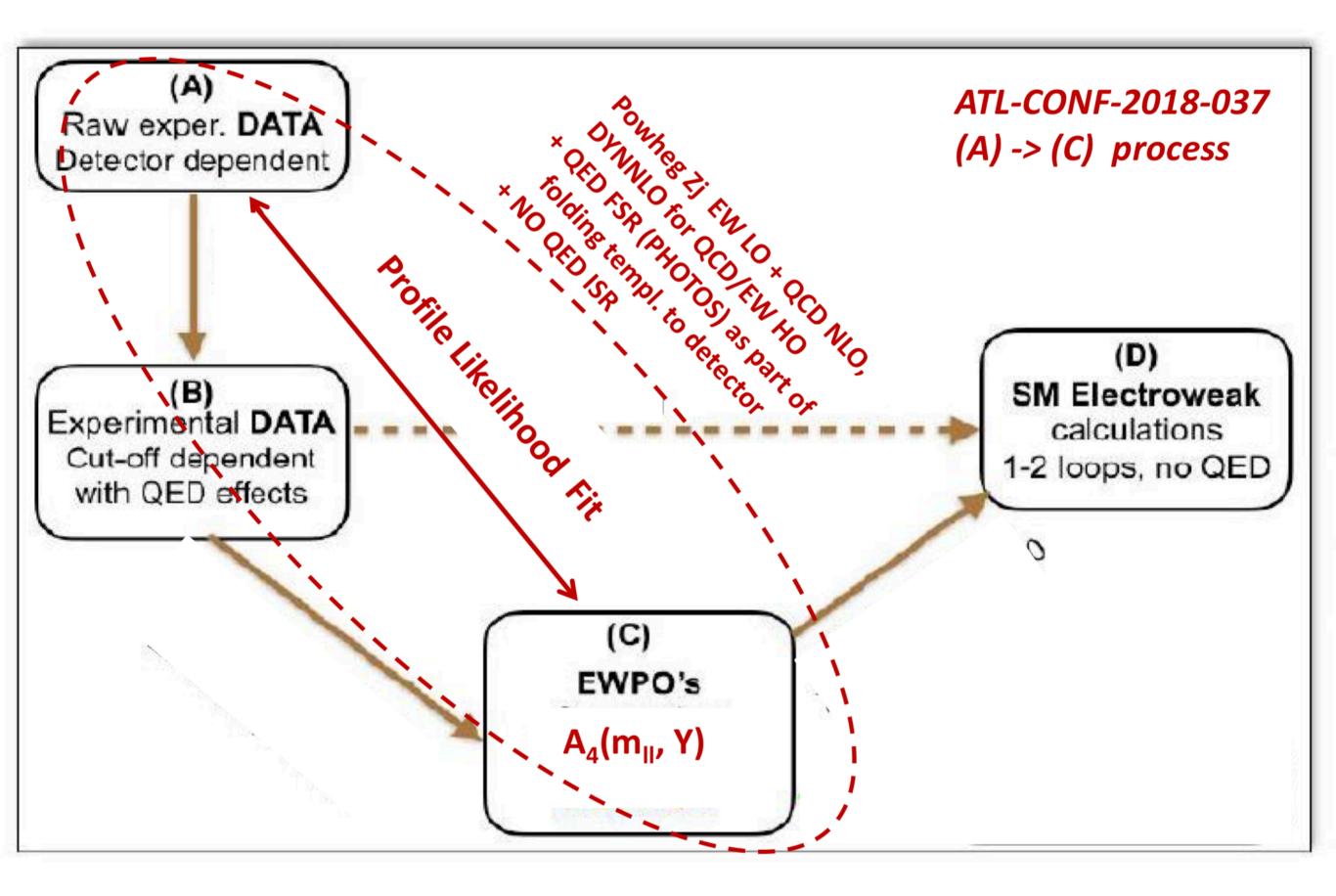
https://arxiv.org/abs/1507.02470

CMS like detector	2016	2017-18
	sample	sample
Energy	8 TeV	13-14 TeV
Number of	$8.2M \ \mu^+\mu^-$	$120M \ \mu^{+}\mu^{-}$
reconstructed events	$6.8M \ e^+e^-$	-
$\Delta \sin^2 \theta_W$		
Statistical error	± 0.00034	± 0.00011
Weighted PDF error	± 0.00022	± 0.00014
(Stat+PDF) error	± 0.00040	± 0.00018
$\Delta M_W^{indirect}$	MeV	MeV
Statistical error	± 17	± 5
weighted PDF error	± 11	± 7
(Stat+PDF) error	± 20	± 9
		. comparable to the


direct determination

Parameter	Value	Description	
	Measured		
m_Z	$91.1876 \mathrm{GeV}$	Mass of Z boson	
m_H	$125.0 { m GeV}$	Mass of Higgs boson	
m_t	$173.0 \mathrm{GeV}$	Mass of top quark	
m_b	$4.7 \mathrm{GeV}$	Mass of b quark	
$1/\alpha(0)$	137.0359895(61)	QED coupling constant in Thomson limit	
G_{μ}	$1.166389(22) \cdot 10^{-5} \text{ GeV}^{-2}$	Fermi constant from muon lifetime	
	Calculated		
m_W	$80.353~{ m GeV}$	Mass of W boson	
$\sin^2 heta_W$	0.22351946	On mass-shell-value of weak mixing angle	
$\alpha(m_Z^2)$	0.00775995		
$1/\alpha(m_Z^2)$	128.86674175		
ZPAR(6) - ZPAR(8)	0.23175990	$sin^2 heta_{eff}^\ell(m_Z^2) \; (e,\mu, au)$	
ZPAR(9)	0.23164930	$sin^2 \theta^u_{eff}(m_Z^2) \; ({ m up \; quark})$	
ZPAR(10)	0.23152214	$\sin^2 \theta^d_{eff}(m_Z^2)$ (down quark)	

$LO EW \qquad NLO+HO EW$ $A_4 = a^* sin^2 \theta_W + b \rightarrow (a + \delta a_{EW})^* sin^2 \theta_{eff}^I + (b + \delta b_{EW})$

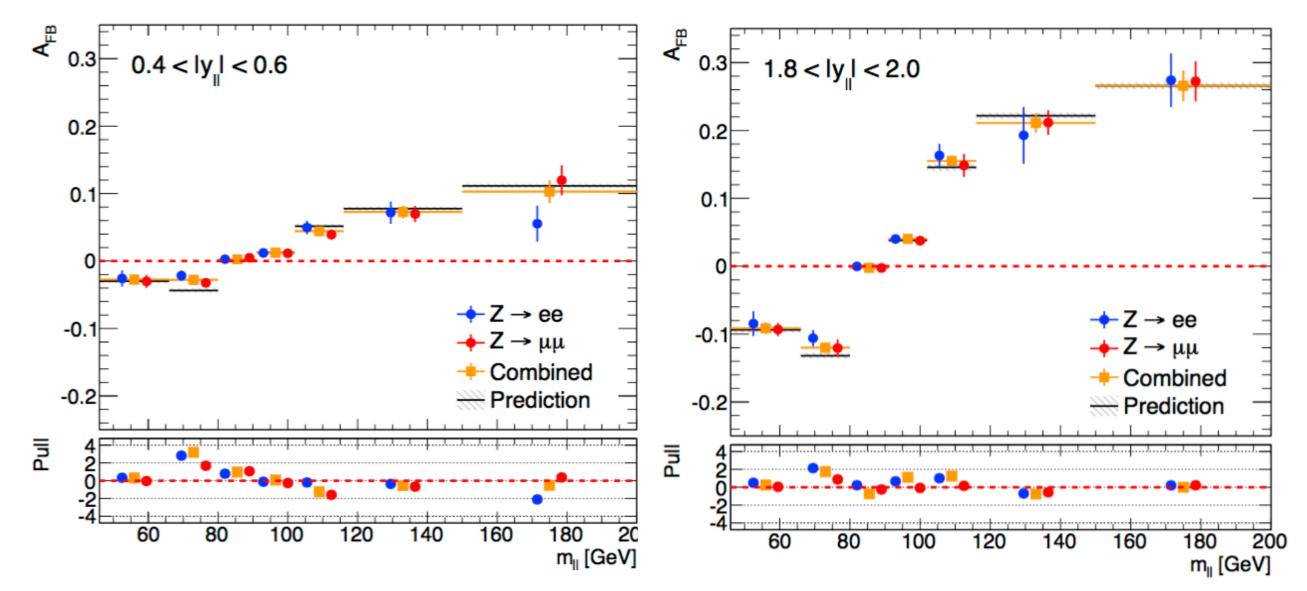

Step A:

A4 calculated using PowhegZj MC. Adding term δV to vector couplings allows to derive A4(sin² θ_{eff}) dependency.

- 1) EW weights with form-factors from Dizet library
- 2) EW weights with effective Born-like couplings
- $\frac{\delta a_{EW}}{\delta b_{EW}} \text{ calculated assuming linear}$ relation for sin² $\theta_{eff}^{LEP} \pm 100 \ 10-5$

Step B:

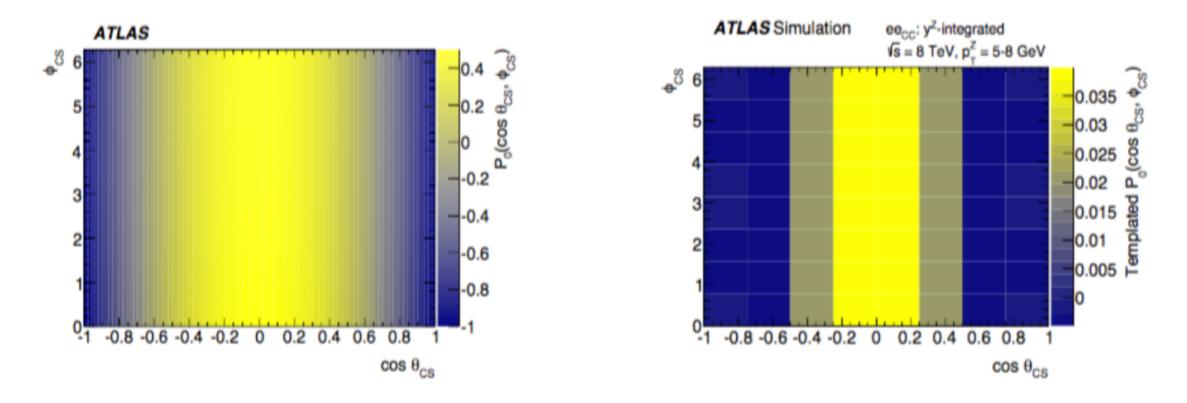
- A4, a, b calculated using DYTURBO with $sin^2\theta_w = 0.23152 \pm 100 \ 10-5 \ and \ Born \ ME$
- δa_{EW}, δb_{EW} derived in step (A) applied as shift to a, b in step (B)


INDIRECT MW DETERMINATION

Indirect measurements LEP-1 and SLD (<i>m</i> _t)	80.363±0.020
NuTeV	80.135±0.085
CDF μμ 9 fb ⁻¹	-80.365±0.047
CDF ee 9 fb ⁻¹	80.313±0.027
CDF <i>ee+μμ</i> 9 fb ⁻¹	80.328±0.024
D0 ee 10 fb ⁻¹ August 2016: preliminary	80.373±0.024
TeV combined: CDF+D0 August 2016: preliminary	80.351±0.018
Direct measurement TeV and LEP-2	80.385±0.015

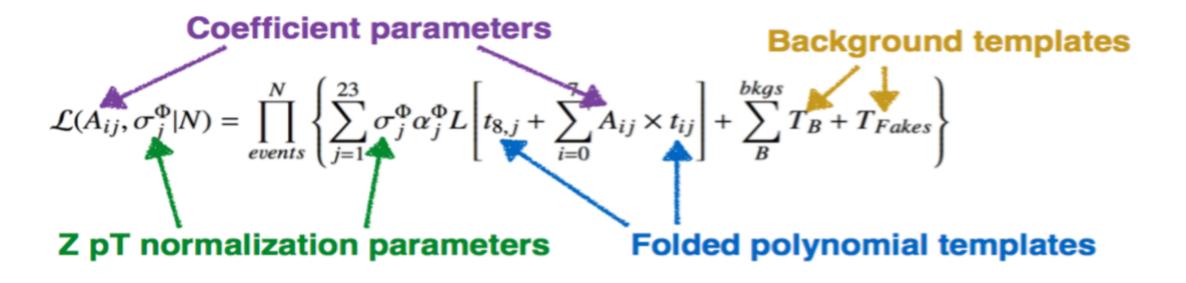
80 80.1 80.2 80.3 80.4 80.5 80.6 W-boson mass (GeV/c²)

Z 3D



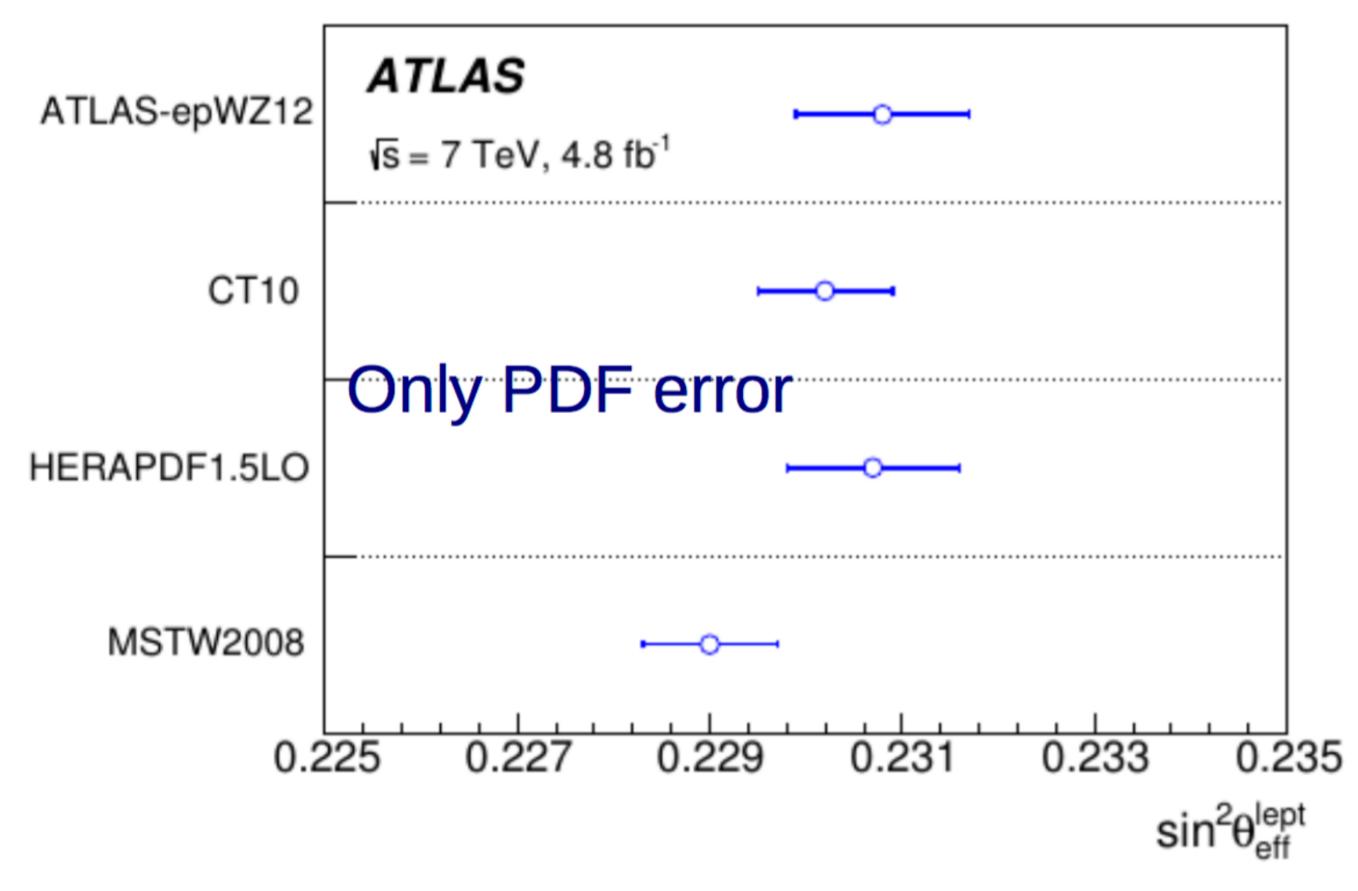
CC electrons only

	$\Delta \sin^2 \theta_W$
No PDF uncertainties	0.00052
With PDF uncertainties	0.00068


 A_i coefficients are extracted from the shapes of the angular distributions exploiting the orthogonality of the P_i polynomials. The average value of the P_i polynomials relates to the A_i coefficients attached to them (moment method). Reference A_i are extracted from the full phase space and are then "folded" to the reco space using MC to model acceptance, efficiency and migrations (leptonic kinematic cuts heavily sculpt angular distributions):

Reference templates for each A_i are built in 23 p_T^Z bins (and in y^Z bins for detailed measurements). They are then fit to data to extract A_i coefficients in the full phase space.

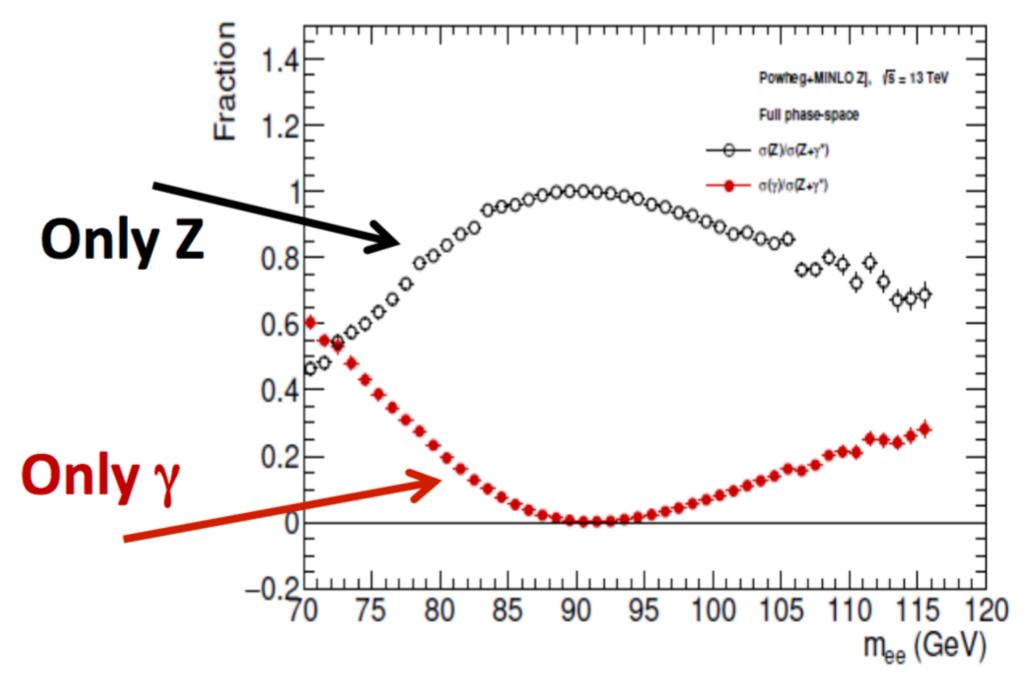
Likelihood is built using folded polynomial and background templates.


Fit is performed to the data to extract:

- A_i coefficients (8 in 23 p_T^Z bins),
- σ_j normalization parameters (23 p_T^Z bins):
 - σ_j scale all signal templates for each p_T^Z bin,
 - σ_j measure differential cross section in full phase space,
 - σ_j could be reparametrized to extract differential cross section normalized to the total cross section $(1/\sigma d\sigma/dp_T)$.

Systematics differences: A_i is a ratio of cross sections in one p_T^Z bin. Overall acceptance uncertainties will impact the cross section while only uncertainties on the acceptance shape in $cos\theta \times \phi$ will impact the A_i . The relative cross section is also a ratio of cross sections, but the denominator spans the entire p_T^Z range, while again an A_i is defined in a single p_T^Z bin, so this will cause some difference in the systematics between the relative cross section and an A_i .

ATLAS PDF ERRORS


ATLAS BREAKDOWN

	CC electrons	CF electrons	Muons	Combined
Uncertainty source	$[10^{-4}]$	$[10^{-4}]$	$[10^{-4}]$	$[10^{-4}]$
PDF	10	10	9	9
MC statistics	5	2	5	2
Electron energy scale	4	6		3
Electron energy resolution	4	5		2
Muon energy scale		—	5	2
Higher-order corrections	3	1	3	2
Other sources	1	1	2	2

Z-GAMMA* CONTRIBUTION

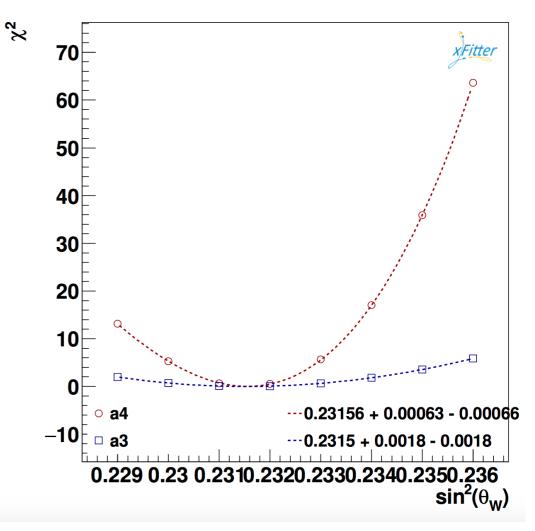
Full phase-space

CDF COMBINED

TABLE V. Extracted values of $\sin^2 \theta_{eff}^{lept}$ and $\sin^2 \theta_W$ after averaging over the NNPDF-3.0 ensembles. The "weighted" templates denote the w_k -weighted ensembles; and $\delta \sin^2 \theta_W$ is the PDF uncertainty. The uncertainties of the electroweak-mixing parameters are the measurement uncertainties $\bar{\sigma}$. For the $\bar{\chi}^2$ column, the number in parentheses is the number of mass bins of the A_{fb} measurement. The *ee*-channel values are from Table III, and the $\mu\mu$ -channel values use the previous CDF measurement of A_{fb} with $\mu^+\mu^-$ pairs [6].

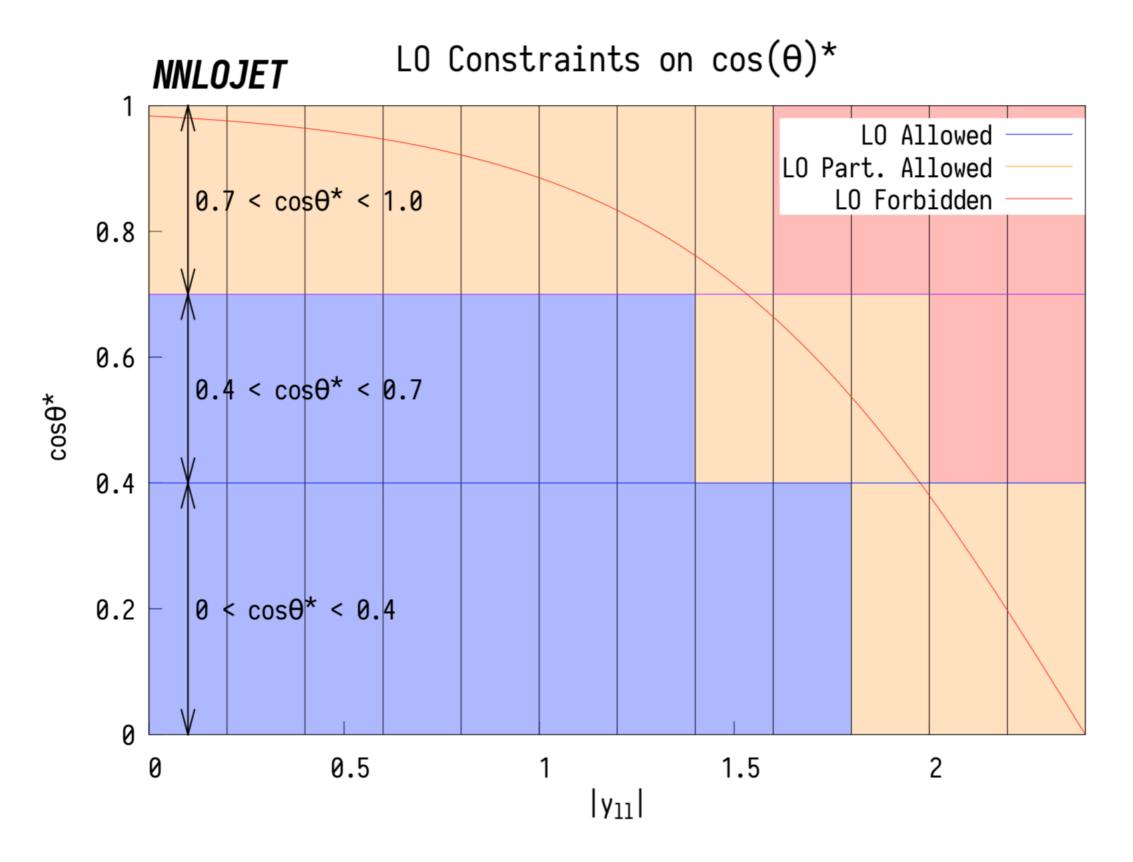
				-	
Template	Channel	$\sin^2 heta_{ m eff}^{ m lept}$	$\sin^2 \theta_W$	$\delta \sin^2 \theta_W$	$\bar{\chi}^2$
POWHEG-BOX NLO, default	$\mu\mu$	0.23140 ± 0.00086	0.22316 ± 0.00083	± 0.00029	21.0(16)
POWHEG-BOX NLO, weighted	μμ	0.23141 ± 0.00086	0.22317 ± 0.00083	± 0.00028	20.7(16)
POWHEG-BOX NLO, default	ee	0.23249 ± 0.00049	0.22429 ± 0.00048	± 0.00020	15.9(15)
POWHEG-BOX NLO, weighted	ee	0.23248 ± 0.00049	0.22428 ± 0.00048	± 0.00018	15.4(15)
POWHEG-BOX NLO, default	$ee + \mu\mu$	0.23222 ± 0.00043	0.22401 ± 0.00041	± 0.00021	38.3(31)
POWHEG-BOX NLO, weighted	$ee + \mu\mu$	0.23221 ± 0.00043	0.22400 ± 0.00041	± 0.00016	35.9(31)
Tree LO, default	μμ	0.23154 ± 0.00085	0.22330 ± 0.00082	± 0.00031	20.9(16)
Tree LO, weighted	μμ	0.23153 ± 0.00085	0.22329 ± 0.00082	± 0.00029	20.5(16)
Tree LO, default	ee	0.23252 ± 0.00049	0.22432 ± 0.00047	± 0.00021	22.4(15)
Tree LO, weighted	ee	0.23250 ± 0.00049	0.22430 ± 0.00047	± 0.00021	21.5(15)
Tree LO, default	$ee + \mu\mu$	0.23228 ± 0.00042	0.22407 ± 0.00041	± 0.00023	44.4(31)
Tree LO, weighted	$ee + \mu\mu$	0.23215 ± 0.00043	0.22393 ± 0.00041	± 0.00016	37.4(31)

CDF COMBINED


TABLE VI. Summary of the systematic uncertainties on the $\mu\mu$ and *ee*-channel combination for the electroweak-mixing parameters $\sin^2 \theta_{\text{eff}}^{\text{lept}}$ and $\sin^2 \theta_W$.

Source	$\sin^2 heta_{ m eff}^{ m lept}$	$\sin^2 \theta_W$
Energy scale	± 0.00002	± 0.00002
Backgrounds	± 0.00003	± 0.00003
NNPDF-3.0 PDF	± 0.00016	± 0.00016
QCD scale	± 0.00006	± 0.00007
Form factor	•••	± 0.00008

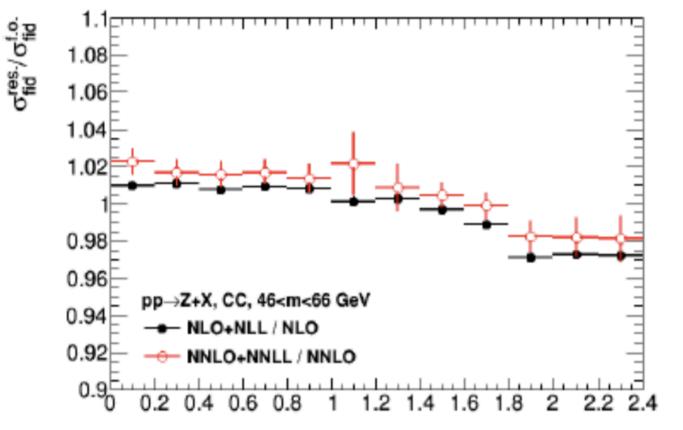
EXTRACTION FROM PUBLISHED A4


- Performed a test extraction of the s2w from the published values of A4 as function of pTZ
 - Using XFitter for chi2 minimisation
 - Predictions at each value of $sin^2\theta_W$ from DYTURBO (LO) with CT10nlo

Source	a4	a3
Experimental	± 0.00042	± 0.00175
PDFs	± 0.00047	± 0.00048
QCD scales	± 0.00008	± 0.00008
Total (decomposed)	± 0.00064	± 0.00182
Total (from fit)	± 0.00065	± 0.00181

The full covariance matrix of the data is used, but no splitting into different sources of uncertainty.

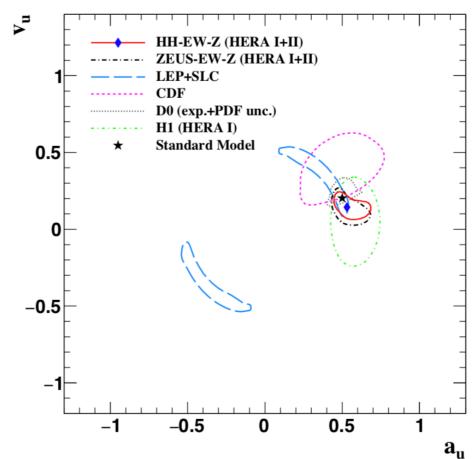
Not possible to correlate the PDFs used in the measurement and those for the extraction.



PDF PROFILING VS FITS

- PDF profiling is not a replacement for a full fit
- Profiling can fail if the impact of the new data is too large
 - They can't account for methodological changes, such as in the PDFs parametrisation or modification needed to theory calculations
 - Standard versions of profiling assume a DeltaChi2=1 criterion. This is generally not the case for global fits. The impact of the new data estimated with profiling will generally be different than including the same data in a new fit.
- Are results of a PDF(+WMA) fit of the Z3D data consistent with profiling?

ISSUES WITH NNLO


- Our 7 TeV W/Z data has uncovered a discrepancy in the NNLO theory predictions used, which affects their usage in PDF fits
 - The two codes differ in their treatment of IR singularities cancellations (sector decomposition vs qT subtraction)
 - Effect depends on fiducial selection, 0.2% agreement in full phase-space. but % level differences after lepton cuts

- Soft gluon resummation should mitigate this issue
- Should be considered by future fit of precise DY data (already done by CT)
- Impact on fits to Z3D (and WMA) is yet to be evaluated

LONG TERM POSSIBILITIES

- PDF uncertainties will become even more important for future Run2/3 measurements (both WMA and W mass)
- * We have no guarantee that the spread among global fits will reduce significantly in the future and differences in their methodology and theory inputs will likely not be addressed
- Effort started within the LHC EWK WG and PDF4LHC communities to estimate (using toys) correlations among different global fits
- On a longer timescale a proper QCD+EWK fit would solve most of the issues we currently have with PDFs
- And provide a framework for adding and combining additional measurements

