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Aim:Take existing code and improve it automatically

• Applications
• Airport ground movements. 

• Software engineering

• Medicine – heart disease indicator

I currently teach on programme at BUPT – 3 years 

Previously at University Nottingham Ningbo China – 4 years

http://gpbib.cs.ucl.ac.uk/gp-html/index.html (40th / 10,000. 2nd largest AI BIB)

https://scholar.google.co.uk/citations?user=iZIjJ80AAAAJ&hl=en

http://gpbib.cs.ucl.ac.uk/gp-html/index.html
https://scholar.google.co.uk/citations?user=iZIjJ80AAAAJ&hl=en


Supervised Machine Learning
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Machine 
Learning 
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One Man – One/Many Algorithm
1. Researchers design heuristics 

by hand and test them on 
problem instances or arbitrary 
benchmarks off internet. 

2. Presenting results at 
conferences and publishing in 
journals. In this talk/paper we 
propose a new algorithm… 

Heuristic1

Heuristic2

Heuristic3
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1. Challenge is defining an algorithmic 
framework (set) that includes useful 
algorithms. Black art
2. Let Genetic Programming select the 
best algorithm for the problem class at 
hand. Context!!! Let the data speak for 
itself without imposing our assumptions. 
In this talk/paper we propose a 10,000 
algorithms… 

Heuristic2

Heuristic1

Heuristic10,000

Automatic
Design
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On-line Bin Packing Problem [9,11]

Items packed so far
Sequence of pieces to be packed

1. A sequence of items packed into as few a bins as possible.

2. Bin size is 150 units, items uniformly distributed between 20-100.

3. Different to the off-line bin packing problem where the set of items.

4. The “best fit” heuristic, places the current item in the space it fits best 

(leaving least slack). 

5. It has the property that this heuristic does not open a new bin unless it 

is forced to. 

150 = 

Bin

capacity

Range of 

Item size

20-100

Array of bins 
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Genetic Programming 
applied to on-line bin packing

S size
S size

C capacity

F fullness

E emptiness

Fullness is 

irrelevant 

The space is 

important

Not obvious how to link 

Genetic Programming to 

combinatorial problems.

The GP tree is applied to each

bin with the current item and 

placed in the bin with

The maximum score

Terminals supplied to Genetic Programming

Initial representation {C, F, S}

Replaced with {E, S}, E=C-F



How the heuristics are applied (skip)
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The Best Fit Heuristic
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Best fit = 1/(E-S). Point out features.

Pieces of size S, which fit well into the space remaining E, 

score well.

Best fit applied produces a set of points on the surface, 

The bin corresponding to the maximum score is picked.

Piece sizeemptiness
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Our best heuristic.
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Similar shape to best fit – but curls up in one corner.

Note that this is rotated, relative to previous slide. 



Robustness of Heuristics

= all legal results

= some illegal results
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Testing Heuristics on problems of much larger size than in 
training

Table I H trained100 H trained 250 H trained 500 

100 0.427768358 0.298749035 0.140986023 

1000 0.406790534 0.010006408 0.000350265 

10000 0.454063071 2.58E-07 9.65E-12 

100000 0.271828318 1.38E-25 2.78E-32 

Table shows p-values using the best fit heuristic, for heuristics trained on 

different size problems, when applied to different sized problems

1. As number of items trained on increases,  the probability decreases (see 

next slide). 

2. As the number of items packed increases,  the probability decreases (see 

next slide). 
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Compared with Best Fit

• Averaged over 30 heuristics over 20 problem instances

• Performance does not deteriorate

• The larger the training problem size, the better the bins are packed.

Amount the heuristics beat best fit by
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Compared with Best Fit

• The heuristic seems to learn the number of pieces in the problem

• Analogy with sprinters running a race – accelerate towards end of race.

• The “break even point” is approximately half of the size of the training problem size

• If there is a gap of size 30 and a piece of size 20, it would be better to wait for a 
better piece to come along later – about 10 items (similar effect at upper bound?).

Amount the heuristics beat best fit by
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Meta and Base Learning [15]
1. At the base level we are 

learning about a specific
function. 

2. At the meta level we are 
learning about the 
probability distribution. 

3. We are just doing 
“generate and test” on 
“generate and test”

4. What is being passed 
with each blue arrow?

5. Training/Testing and 
Validation

GA
Function to 

optimize

Mutation 
operator 
designer

Function 
class

base level
Conventional GA 

Meta level

14John R. Woodward16/01/2020

mutationfunction



Compare Signatures (Input-Output)
Genetic Algorithm 

• (𝐵𝑛𝑅)  𝐵𝑛

Input is an objective 
function mapping bit-
strings of length n to a 
real-value. 

Output is a (near optimal) 
bit-string 

i.e. the solution to the 
problem instance

Genetic Algorithm FACTORY
• [(𝐵𝑛𝑅)] 

((𝐵𝑛𝑅)  𝐵𝑛)
Input is a list of functions mapping 
bit-strings of length n to a real-
value (i.e. sample problem 
instances from the problem class). 
Output is a (near optimal) 
mutation operator for a GA 
i.e. the solution method
(algorithm) to the problem class

15

We are raising the level of generality at which we operate. 
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Designing Mutation Operators for 
Evolutionary Programming [18]

1. Evolutionary programing optimizes 
functions by evolving a population of 
real-valued vectors (genotype).

2. Variation has been provided 
(manually) by probability 
distributions (Gaussian, Cauchy, 
Levy).

3. We are automatically generating 
probability distributions (using 
genetic programming).

4. Not from scratch, but from already 
well known distributions (Gaussian, 
Cauchy, Levy). We are “genetically 
improving probability distributions”. 

5. We are evolving mutation operators 
for a problem class (a probability 
distributions over functions). 

6. NO CROSSOVER

Genotype is
(1.3,...,4.5,…,8.7) 
Before mutation 

Genotype is
(1.2,...,4.4,…,8.6) 
After mutation
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(Fast) Evolutionary Programming

1. EP mutates with a Gaussian 

2. FEP mutates with a Cauchy

3. A generalization is mutate 
with a distribution D 
(generated with genetic 
programming)

Heart of algorithm is mutation
SO LETS AUTOMATICALLY DESIGN

16/01/2020 John R. Woodward 17



Evolution GA/GP
• Generate and test: cars, code, models, 

proofs, medicine, hypothesis. 

• Evolution (select, vary, inherit).

• Fit for purpose 
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Test

Generate

Feedback loop
Humans
Computers

Inheritance
Off-spring 
have  similar
Genotype 
(phenotype)
PERFECT 
CODE [3]



Optimization & Benchmark Functions

A set of 23 benchmark functions is typically used 
in the literature.  Minimization

We use them as problem classes. 
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Function Class 1
1. Machine learning needs to generalize. 

2. We generalize to function classes.

3. y = 𝑥2 (a function)

4. y = 𝑎𝑥2(parameterised function)

5. y = 𝑎𝑥2, 𝑎 ~[1,2] (function class)

6. We do this for all benchmark functions. 

7. The mutation operators is evolved to fit the  
probability distribution of functions. 
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Function Classes 2
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Meta and Base Learning
• At the base level we are 

learning about a specific
function. 

• At the meta level we are 
learning about the problem 
class. 

• We are just doing “generate 
and test” at a higher level

• What is being passed with 
each blue arrow?

• Conventional EP 

EP
Function to 

optimize

Probability
Distribution
Generator

Function 
class

base level

Meta level
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Compare Signatures (Input-Output)
Evolutionary Programming

(𝑅𝑛𝑅)  𝑅𝑛

Input is a function 
mapping real-valued 
vectors of length n to a 
real-value. 

Output is a (near optimal) 
real-valued vector

(i.e. the solution to the 
problem instance)

Evolutionary Programming
Designer
[(𝑅𝑛𝑅)]  ((𝑅𝑛𝑅)  𝑅𝑛)

Input is a list of functions mapping 
real-valued vectors of length n to a 
real-value (i.e. sample problem 
instances from the problem class). 
Output is a (near optimal) 
(mutation operator for) 
Evolutionary Programming  
(i.e. the solution method to the 
problem class)

23

We are raising the level of generality at which we operate. 
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Genetic Programming to Generate 
Probability Distributions

1. GP Function Set {+, -, *, %}

2. GP Terminal Set {N(0, random)}

N(0,1) is a normal distribution. 

For example a Cauchy distribution is 
generated by N(0,1)%N(0,1).

Hence the search space of 
probability distributions contains 
the two existing probability 
distributions used in EP but also 
novel probability distributions. 

CAUCHYGAUSSIAN

NOVEL 
PROBABILITY
DISTRIBUTIONS

SPACE OF 
PROBABILITY
DISTRIBUTIONS
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Means and Standard Deviations
These results are good for two reasons. 
1. starting with a manually designed distributions (Gaussian). 
2. evolving distributions for each function class. 
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T-tests
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Performance on Other Problem Classes
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Performance on Other Problem Classes
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Theoretical Motivation 1

1. A search space contains the set of all possible solutions. 

2. An objective function determines the quality of solution. 

3. A (Mathematical idealized) metaheuristic determines the 
sampling order (i.e. enumerates i.e. without replacement). It is a 
(approximate) permutation.  What are we learning?

4. Performance measure P (a, f) depend only on y1, y2, y3

5. Aim find a solution with a near-optimal objective value using a 
Metaheuristic . ANY QUESTIONS BEFORE NEXT SLIDE?

John R. Woodward 29
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P (a, f)



Theoretical Motivation 2
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Function f
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x1
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x1
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σ−𝟏
permutation 
σ

P (a, f) = P (a 𝛔,𝛔−𝟏 f)       P (A, F) = P (A𝛔,𝛔−𝟏F) (i.e. permute bins)

P is a performance measure, (based only on output values).

𝛔,𝛔−𝟏 are a permutation and inverse permutation. 

A and F are probability distributions over algorithms and functions). 

F is a problem class. ASSUMPTIONS IMPLICATIONS

1. Metaheuristic a applied to function 𝛔𝛔−𝟏𝒇 ( that is 𝒇)

2. Metaheuristic a𝛔 applied to function 𝛔−𝟏𝒇 precisely  identical.
John R. Woodward 3016/01/2020





Ground Movements at Airport



Automated Bug Fixing. •Machine learning 

•detect bug location

•suggest bug fix



Heart disease predictor. 

((kwargs['kvk_10'] * einst['FAMILYMI_Y']) +

((kwargs['kvk_11'] * einst['PREVSMOKER']) +

(((kwargs['kvk_12'] * (einst['CHOL'] -
kwargs['kvk_13'])) * einst['SMOKER']) +

((kwargs['kvk_14'] * einst['DM2']) -

((kwargs['kvk_15'] * 
einst['SPORTSCURRENT']) -

(kwargs['kvk_16'] * ((einst['HDL'] -
einst['DM2']) / kwargs['kvk_17'])))))))))))



A Paradigm Shift?

conventional approach  new approach

A
lgo

rith
m

s in
vestigated

/u
n

it tim
e

One person
proposes one 
algorithm
and tests it
in isolation.

One person proposes a
family of  algorithms
and tests them
in the context of 
a problem class. 

• Previously one person proposes one algorithm

• Now one person proposes a set of algorithms

• Analogous to “industrial revolution” from hand made 
to machine made. Automatic Design. 

John R. Woodward 35

Human cost (INFLATION) machine cost MOORE’S LAW

16/01/2020



Thank you. Any questions. 

• Applications
• Airport ground movements. 
• Software engineering
• Medicine – heart disease indicator
j.wooward@qmul.ac.uk
Head of Operational Research GROUP http://or.qmul.ac.uk/
I currently teach on programme at BUPT 
Previously at University Nottingham Ningbo China
http://gpbib.cs.ucl.ac.uk/gp-html/index.html (40th / 10,000. 2nd largest AI BIB)
https://scholar.google.co.uk/citations?user=iZIjJ80AAAAJ&hl=en
https://gow.epsrc.ukri.org/NGBOViewPerson.aspx?PersonId=-485755
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Summary


