John R. Woodward j.wooward@qmul.ac.uk Head of Operational Research http://or.qmul.ac.uk/ **Automatically Building Better** Algorithms : taking existing computer programs and automatically improving them

Aim: Take existing code and improve it automatically

• Applications

- Airport ground movements.
- Software engineering
- Medicine heart disease indicator

I currently teach on programme at BUPT – 3 years Previously at University Nottingham Ningbo China – 4 years

<u>http://gpbib.cs.ucl.ac.uk/gp-html/index.html</u> (40th / 10,000. 2nd largest AI BIB) <u>https://scholar.google.co.uk/citations?user=iZIjJ80AAAAJ&hl=en</u>

Supervised Machine Learning

One Man – One/Many Algorithm

- 1. Researchers design heuristics by hand and test them on problem instances or arbitrary benchmarks off internet.
- 2. Presenting results at conferences and publishing in journals. In this talk/paper we propose a new algorithm...

1. Challenge is defining an algorithmic framework (**set**) that **includes** useful algorithms. **Black art**

2. Let Genetic Programming <u>select the</u> <u>best algorithm for the problem class at</u> <u>hand</u>. Context!!! Let the data speak for itself without imposing our assumptions.

In this talk/paper we propose a 10,000 algorithms...

On-line Bin Packing Problem [9,11]

- 1. A sequence of items packed into as few a bins as possible.
- 2. Bin size is 150 units, items uniformly distributed between 20-100.
- 3. Different to the off-line bin packing problem where the set of items.
- 4. The "best fit" heuristic, places the current item in the space it fits best (leaving least slack).
- 5. It has the property that this heuristic does not open a new bin unless it is forced to.

Genetic Programming applied to on-line bin packing

Not obvious how to link Genetic Programming to combinatorial problems. The GP tree is applied to each bin with the current item and placed in the bin with The maximum score

Terminals supplied to Genetic Programming Initial representation {C, F, S} Replaced with {E, S}, E=C-F

John R. Woodward

How the heuristics are applied (skip)

The Best Fit Heuristic

Best fit = 1/(E-S). Point out features.

Pieces of size S, which fit well into the space remaining E, score well.

Best fit applied produces a set of points on the surface, The bin corresponding to the maximum score is picked.

Our best heuristic.

Similar shape to best fit – but curls up in one corner. Note that this is rotated, relative to previous slide.

Robustness of Heuristics

John R. Woodward

Testing Heuristics on problems of much larger size than in training

Table I	H trained100	H trained 250	H trained 500
100	0.427768358	0.298749035	0.140986023
1000	0.406790534	0.010006408	0.000350265
10000	0.454063071	2.58E-07	9.65E-12
100000	0.271828318	1.38E-25	2.78E-32

Table shows p-values using the best fit heuristic, for heuristics trained on different size problems, when applied to different sized problems

- 1. As number of items trained on increases, the probability decreases (see next slide).
- 2. As the number of items packed increases, the probability decreases (see next slide).

Compared with Best Fit

- Averaged over 30 heuristics over 20 problem instances
- Performance does not deteriorate
- The larger the training problem size, the better the bins are packed.

Compared with Best Fit

- The heuristic seems to learn the number of pieces in the problem
- Analogy with sprinters running a race accelerate towards end of race.
- The "break even point" is approximately half of the size of the training problem size
- If there is a gap of size 30 and a piece of size 20, it would be better to wait for a better piece to come along later – about 10 items (similar effect at upper bound?).

Meta and Base Learning [15]

- 1. At the **base** level we are learning about a **specific** function.
- 2. At the **meta** level we are learning about the probability distribution.
- We are just doing "generate and test" on "generate and test"
- 4. What is being passed with each **blue arrow**?
- 5. Training/Testing and Validation

Compare Signatures (Input-Output)

<u>Genetic Algorithm</u>	G	enetic Algorithm FACTORY
• $(B^n \rightarrow R) \rightarrow B^n$	•	$[(B^n \rightarrow R)] \rightarrow$
Input is an objective function mapping bit- strings of length n to a real-value.	In bit va	$((B^n \rightarrow R) \rightarrow B^n)$ put is a <i>list of</i> functions mapping t-strings of length n to a real- lue (i.e. sample problem stances from the problem class).
Output is a (near optima bit-string	9 1 m	utput is a (near optimal) utation operator for a GA
.e. the <u>solution</u> to the problem <u>instance</u>		gorithm) to the <u>problem</u> <u>class</u>

We are **raising the level of generality** at which we operate.

Designing Mutation Operators for Evolutionary Programming [18]

John R. Woodward

- **1. Evolutionary programing** optimizes functions by evolving a population of real-valued vectors (genotype).
- 2. Variation has been provided (manually) by probability distributions (Gaussian, Cauchy, Levy).
- 3. We are **automatically generating** probability distributions (using genetic programming).
- 4. Not from scratch, but from already well known distributions (Gaussian, Cauchy, Levy). We are "genetically improving probability distributions".
- 5. We are evolving mutation operators **for a problem class** (a probability distributions over functions).

^{16/01/2020}6.

NO CROSSOVER

Genotype is (1.3,...,4.5,...,8.7) Before mutation

(Fast) Evolutionary Programming

Heart of algorithm is mutation SO LETS AUTOMATICALLY DESIGN

 $x_i'(j) = x_i(j) + \eta_i(j)D_j$

- 1. EP mutates with a Gaussian
- 2. FEP mutates with a Cauchy
- A generalization is mutate with a distribution D (generated with genetic programming)

- 1. Generate the initial population of μ individuals, and set k = 1. Each individual is taken as a pair of real-valued vectors, $(x_i, \eta_i), \forall i \in \{1, \dots, \mu\}$.
- Evaluate the fitness score for each individual (x_i, η_i), ∀i ∈ {1, · · · , μ}, of the population based on the objective function, f(x_i).
- 3. Each parent (x_i, η_i) , $i = 1, \dots, \mu$, creates a single offspring (x_i', η_i') by: for $j = 1, \dots, n$,

$$x_i'(j) = x_i(j) + \eta_i(j)N(0,1), \qquad (1)$$

 $\eta_i'(j) = \eta_i(j) \exp(\tau' N(0,1) + \tau N_j(0,1)) \quad (2)$

where $x_i(j)$, $x_i'(j)$, $\eta_i(j)$ and $\eta_i'(j)$ denote the *j*-th component of the vectors x_i , x_i' , η_i and η_i' , respectively. N(0, 1) denotes a normally distributed onedimensional random number with mean zero and standard deviation one. $N_j(0, 1)$ indicates that the random number is generated anew for each value of *j*. The factors τ and τ' have commonly set to $\left(\sqrt{2\sqrt{n}}\right)^{-1}$ and $\left(\sqrt{2n}\right)^{-1}$ [9, 8].

- 4. Calculate the fitness of each offspring $(x_i', \eta_i'), \forall i \in \{1, \cdots, \mu\}$.
- Conduct pairwise comparison over the union of parents (x_i, η_i) and offspring (x_i', η_i'), ∀i ∈ {1, · · ·, μ}. For each individual, q opponents are chosen randomly from all the parents and offspring with an equal probability. For each comparison, if the individual's fitness is no greater than the opponent's, it receives a "win."
- Select the µ individuals out of (x_i, η_i) and (x_i', η_i'), ∀i ∈ {1, · · ·, µ}, that have the most wins to be parents of the next generation.
- 7. Stop if the stopping criterion is satisfied; otherwise, k = k + 1 and go to Step 3.

Evolution GA/GP

- Generate and test: cars, code, models, proofs, medicine, hypothesis.
- Evolution (select, vary, inherit).
- Fit for purpose

Inheritance Off-spring have similar Genotype (phenotype) PERFECT CODE [3]

Optimization & Benchmark Functions

A set of 23 benchmark functions is typically used in the literature. **Minimization** $\forall x \in S : f(x_{min}) \leq f(x)$ We use them as **problem classes**.

Table 1: The 23 test functions used in our experimental studies, where n is the dimension of the function, f_{min} the minimum value of the function, and $S \subseteq \mathbb{R}^n$.

Test function	n	S	f_{min}
$f_1(x) = \sum_{i=1}^n x_i^2$	30	$[-100, 100]^n$	0
$f_2(x) = \sum_{i=1}^n x_i + \prod_{i=1}^n x_i $	30	$[-10, 10]^n$	0
$f_3(x) = \sum_{i=1}^n (\sum_{j=1}^i x_j)^2$	30	$[-100, 100]^n$	0
$f_4(x) = \max_i \{ x_i , 1 \le i \le n \}$	30	$[-100, 100]^n$	0
$f_5(x) = \sum_{i=1}^{n-1} [100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2]$	30	$[-30, 30]^n$	0
$f_6(x) = \sum_{i=1}^n \lfloor x_i + 0.5 \rfloor$	30	$[-100, 100]^n$	0
$f_7(x) = \sum_{i=1}^{n} ix_i^4 + random[0,1)$	30	$[-1.28, 1.28]^n$	0
$f_8(x) = \sum_{i=1}^{n} -x_i \sin(\sqrt{ x_i })$	30	$[-500, 500]^n$	-12569.5
$f_9(x) = \sum_{i=1}^{n-1} [x_i^2 - 10\cos(2\pi x_i) + 10)]$	30	$[-5.12, 5.12]^n$	0
$f_{10}(x) = -20 \exp\left(-0.2\sqrt{\frac{1}{n}\sum_{i=1}^{n} x_i^2}\right) - \exp\left(\frac{1}{n}\sum_{i=1}^{n} \cos 2\pi x_i\right)$	30	$[-32, 32]^n$	0
+20 + e			

Function Class 1

- 1. Machine learning needs to generalize.
- 2. We generalize to function classes.
- 3. $y = x^2$ (a function)
- 4. $y = ax^2$ (parameterised function)
- 5. $y = ax^2$, $a \sim [1,2]$ (function class)
- 6. We do this for all benchmark functions.
- 7. The mutation operators is evolved to fit the probability distribution of functions.

Function Classes 2

Function Classes	S	b	f_{min}
$f_1(x) = a \sum_{i=1}^n x_i^2$	$[-100, 100]^n$	N/A	0
$f_2(x) = a \sum_{i=1}^{n} x_i + b \prod_{i=1}^{n} x_i $	$[-10, 10]^n$	$b \in [0, 10^{-5}]$	0
$f_3(x) = \sum_{i=1}^n (a \sum_{j=1}^i x_j)^2$	$[-100, 100]^n$	N/A	0
$f_4(x) = \max_i \{ a \mid x_i \mid , 1 \le i \le n \}$	$[-100, 100]^n$	N/A	0
$f_5(x) = \sum_{i=1}^{n} \left[a(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right]$	$[-30, 30]^n$	N/A	0
$f_6(x) = \sum_{i=1}^{n} (\lfloor ax_i + 0.5 \rfloor)^2$	$[-100, 100]^n$	N/A	0
$f_7(x) = a \sum_{i=1}^{n} ix_i^4 + random[0, 1)$	$[-1.28, 1.28]^n$	N/A	0
$f_8(x) = \sum_{i=1}^n -(x_i \sin(\sqrt{ x_i }) + a)$	$[-500, 500]^n$	N/A	[-12629.5,
			-12599.5]
$f_9(x) = \sum_{i=1}^{n} \left[ax_i^2 + b(1 - \cos(2\pi x_i)) \right]$	$[-5.12, 5.12]^n$	$b \in [5, 10]$	0
$f_{10}(x) = -a \exp(-0.2\sqrt{\frac{1}{n}\sum_{i=1}^{n} x_i^2})$	$[-32, 32]^n$	N/A	0
$-\exp(\frac{1}{n}\sum_{i=1}^{n}\cos 2\pi x_i) + a + e$			

Meta and Base Learning

- At the **base** level we are learning about a **specific** function.
- At the meta level we are learning about the problem class.
- We are just doing "generate and test" at a higher level
- What is being passed with each **blue arrow**?
- Conventional EP

Compare Signatures (Input-Output)

Evolutionary Programming	Evolutionary Programming
$(R^n \rightarrow R) \rightarrow R^n$	Designer
Input is a function	$[(R^n \to R)] \to ((R^n \to R) \to R^n)$
mapping real-valued vectors of length n to a real-value.	Input is a <i>list of</i> functions mapping real-valued vectors of length n to a real-value (i.e. sample problem instances from the problem class).
Output is a (near optimal) real-valued vector	Output is a (near optimal) (mutation operator for)
(i.e. the <u>solution</u> to the problem <u>instance</u>)	(i.e. the <u>solution</u> <u>method</u> to the problem <u>class</u>)

We are **raising the level of generality** at which we operate.

Genetic Programming to Generate Probability Distributions

- 1. GP **Function Set** {+, -, *, %}
- 2. GP **Terminal Set** {N(0, random)}

N(0,1) is a normal distribution.

For example a Cauchy distribution is generated by N(0,1)%N(0,1).

Hence the search space of probability distributions contains the two existing probability distributions used in EP but also novel probability distributions.

Means and Standard Deviations

These results are good for two reasons.

1. starting with a manually designed distributions (Gaussian).

2. evolving distributions for each function class.

Function	FF	P	C	EP	GP-distribution					
Class	Mean Best	$Std \ Dev$	Mean Best	Std Dev	Mean Best	$Std \ Dev$				
f_1	1.24×10^{-3}	$2.69{\times}10^{-4}$	$1.45{\times}10^{-4}$	$9.95{\times}10^{-5}$	6.37×10^{-5}	5.56×10^{-5}				
f_2	$1.53{ imes}10^{-1}$	2.72×10^{-2}	$4.30{ imes}10^{-2}$	9.08×10^{-3}	8.14×10^{-4}	8.50×10^{-4}				
f_3	2.74×10^{-2}	2.43×10^{-2}	5.15×10^{-2}	9.52×10^{-2}	6.14×10^{-3}	8.78×10^{-3}				
f_4	1.79	1.84	1.75×10	6.10	2.16×10^{-1}	6.54×10^{-1}				
f_5	2.52×10^{-3}	4.96×10^{-4}	$2.66{ imes}10^{-4}$	4.65×10^{-5}	8.39×10^{-7}	1.43×10^{-7}				
f_6	$3.86{ imes}10^{-2}$	$3.12{ imes}10^{-2}$	4.40×10	1.42×10^{2}	9.20×10^{-3}	$1.34{ imes}10^{-2}$				
f_7	6.49×10^{-2}	1.04×10^{-2}	$6.64{\times}10^{-2}$	$1.21{\times}10^{-2}$	5.25×10^{-2}	8.46×10^{-3}				
f_8	-11342.0	3.26×10^{2}	-7894.6	6.14×10^{2}	-12611.6	2.30×10				
f_9	6.24×10^{-2}	1.30×10^{-2}	1.09×10^{2}	3.58×10	1.74×10^{-3}	4.25×10^{-4}				
f_{10}	1.67	4.26×10^{-1}	1.45	2.77×10^{-1}	1.38	2.45×10^{-1}				

T-tests

Table 5 2-tailed t-tests comparing EP with GP-distributions, FEP and CEP on $f_{1}\text{-}f_{10}\text{.}$

Function	Number of	GP-distribution vs FEP	GP-distribution vs CEP
Class	Generations	t-test	t-test
f_1	1500	2.78×10^{-47}	4.07×10^{-2}
f_2	2000	5.53×10^{-62}	1.59×10^{-54}
f_3	5000	8.03×10^{-8}	1.14×10^{-3}
f_4	5000	1.28×10^{-7}	3.73×10^{-36}
f_5	20000	2.80×10^{-58}	9.29×10^{-63}
f_6	1500	1.85×10^{-8}	3.11×10^{-2}
f_7	3000	3.27×10^{-9}	2.00×10^{-9}
f_8	9000	7.99×10^{-48}	5.82×10^{-75}
f_9	5000	6.37×10^{-55}	6.54×10^{-39}
f_{10}	1500	9.23×10^{-5}	1.93×10^{-1}

Performance on Other Problem Classes

Table 8: This table compares the fitness values (averaged over 20 runs) of each of the 23 ADRs on each of the 23 function classes. Stardard deviations are in parentheses.

_		ADR1	ADR2	ADR3	ADR4	ADR5	ADR6	ADR7	ADR8	ADR9	ADR10	ADR11	ADR12	ADR13	ADR14	ADR15	ADR16	ADR17	ADR18	ADR19	ADR20	ADR21	ADR22	ADR23
-	V																							
-	<i>I</i> 2																							
-	<i>f</i> 3																							
	∫4																							
-	/ 5																							
-	ſ ₆																							
-	ĥ																							
-	<i>f</i> 8																							
-	/ 9																							
-	Ло																							
-	ſ																							
-	<i>f</i> ₁₂																							
-	Ĵ13																							
-	<i>J</i> 14																							
-	<i>f</i> 15																							
-	f ₁₆																							
-	f ₁₇																							
-	/ 18																							
.6/01/2020	/ 19																							

Performance on Other Problem Classes

Table 8: This table compares the fitness values (averaged over 20 runs) of each of the 23 ADRs on each of the 23 function classes. Stardard deviations are in parentheses.

		ADR1	ADR2	ADR3	ADR4	ADR5	ADR6	ADR7	ADR8	ADR9	ADR10	ADR11	ADR12	ADR13	ADR14	ADR15	ADR16	ADRI7	ADR18	ADR19	ADR20	ADR21	ADR22	ADR23
	3	3.796042378	3.796795988	3.79617249	5 3.80009705	53 3.79821520	01 3.79842688	88 3.7968202	3 2531.20755	2 3.79605757	1 3.79599092	23 3.8459980	9 3.79618666	4 3.79627715	5 3.79664936	8 3.79612197	1655.307735	16670.6789	8 3.80281910	6 4.26044510	7 3.79609754	1 44.1875006	7 3.79606648	1 3.816827509
л	((15.53395359)(15.53405343	3)(15.533918	81)(15.533607	85)(15.533752	01)(15.533755	98)(15.533876	\$87)(11290.258	39)(15.533889	34)(15.533939	45)(15.52984)	18)(15.533912)	(15.5339230	9)(15.5339252	5)(15.533990	83)(2395.67763	5)(7873.98008	9)(15.5311743	37)(15.510304)	1) (15.533986	3)(49.933929)	27)(15.533950	2) (15.53473388)
6	(0.03272533	0.017265507	0.06411854	0.24376593	38 0.22702993	32 0.24241586	67 0.1411522	55 10.8983148	4 0.01264091	8 0.01557410	02 0.8782842	78 0.04827971	5 0.06816328	5 0.10166228	0.03301072	5 5.652569538	62.08781058	8 0.02943591	0.00308181	9 0.00814376	6 0.26990718	4 0.03308852	9 0.039637186
12	((0.006220059)(0.00316433)	(0.0122149)	85)(0.0528339	25)(0.0415262	29)(0.0454217	12)(0.0272547	796)(29.613518	36)(0.0023666	78)(0.0032320	023)(0.2246444	83)(0.00902910	09)(0.01331329	8)(0.02120440	7)(0.0065393	26)(6.56695685) (15.7734137	9)(0.00542848	89)(0.0008457)	87)(0.0015311)	36)(0.1489661	46)(0.0064875	38)(0.038535293)
6	(0.059115953	0.542598852	0.01862624	0.10313291	14 0.01394862	27 0.01423626	66 0.0059228	77 33.7771880	2 2.66536695	1 2.03933820	09 0.9379326	26 0.28659926	0.06413490	2 0.09701989	6 0.08487915	4 3433.708363	3 7087.02423	0.15743609	6 50.2347165	8 5.58256899	3 11.0173970	1 0.19922599	7 182.1465227
73	((0.127613356))(0.907149879	9)(0.0388453	13)(0.0522129	98)(0.0061593	56)(0.0059877	97)(0.0030580	048)(25.6057876	\$8)(3.0272852	58)(2.6804627	701)(0.4712715	29)(0.42072066	64)(0.10001931	9)(0.11351944	9)(0.1233401	91)(3872.30608	1)(4298.4011)	(0.1946413)	19)(47.122565)	04)(6.8968444	\$8)(7.7774014	27)(0.3808773	88)(157.1263872)
6	1	17.25966091	19.41813374	16.1534643	4 0.29262880	03 9.64846137	14.0487543	32 16.792794	46 28.1335950	8 10.9966106	5 14.1950193	39 0.1623177	01 2.63022687	6 4.39939344	7 1.33061509	9 21.5779080	8 68.40219553	74.66207074	40.8803212	8 37.0701225	1 16/7028991	4 61.0479815	2 15.8092563	7 8.929701211
	((4.966599608)(7.25342918	1)(4.8873309	93)(0.5027878	56)(5.3994531	21)(7.0075900	06)(7.2609231	198)(43.091639	\$7)(5.8999348	32)(6.7653070	96)(0.1251418	91)(2.04264155	55)(2.85271002	1)(1.70057126	1)(7.9468643	47)(7.99401312	4)(7.25714181	8)(9.60600021	18)(14.005208)	25)(5.7481588	81)(8.8585257	87)(4.9779454	29)(5.603363277)
IS		-12.59873403	-11.39294662	2 -13.3861624	42 -12 177661	12 -12.986177	19 -13.263851	56 -13.434362	4522608.39	5 -12.806515	66 -12.384165	526 -10.210818	63 -12.6179561	19 -12.0732790	7 -12.3406039	4 -11.373460	75 768.5563656	189434.096	8 -11.6837873	3 -10.2007020	\$1 -10.913256	51 6.01800871	3 -12.792812	07 -7.353638881
	((19.08466205)(16.77875418	8)(19.294897	59)(20.178336	59)(18.943715	83)(19.309002	217)(19.833576	\$55)(4559249.5)	22)(19.388958	11)(17.828007	791)(18:256437	11)(18.513)	(17.9259638	6)(17.0817524	4) (18.023538	28)(1491.14411	5)(135909.774	8)(18.8209568	81)(17.376211)	29)(18.053489	47)(25.802803	49)(19.301596	97)(20.10064511)
Se.	4	422.0335	1143.0035	12.165	0.135	0.058	0.0535	0.11	9.298	0.107	0.015	0.3255	0.039	0.035	0.0315	195.777	17987.881	37431.6995	424.4385	375.2155	0.017	4999.8915	185.43	83.996
	((1649.46925)	(2074.28016)	4)(38.347877)	39)(0.2647242	86)(0.2219435	68)(0.2228588	318)(0.3046136	647)(6.8629889	5)(0.2503492	3) (0.0228265	577)(0.1572284	63)(0.06103493	34)(0.06645140	7)(0.02455391	5)(490.12203	71)(13480.8209	2)(19447.5181	3)(752.32380)	13)(888.00064)	81)(0.0259756	97)(5268.8625)	37)(446.23663	62)(123.8021751)
h	(0.065542671	0.078308367	0.05619461	5 0.08411716	6 0.04703083	38 0.04882212	2 0.0487466	47 2.80724387	9 0.06353203	2 0.05862676	61 0.1949044	23 0.06192064	8 0.05368563	5 0.06225376	6 0.07024494	2 0.532824765	45.5222079	0.09150590	3 0.0869747	0.06586313	0.47862875	7 0.06288902	0.186500061
	((0.010787905)(0.024299062	8)(0.0116190/	42)(0.0195710	33)(0.0060561	8) (0.0065360	2) (0.0077357	7) (1.2138878	5) (0.0128047	65)(0.0092807	82)(0.0418059	87)(0.01071564	46)(0.00806017	1)(0.01074651	3)(0.0105067	48)(0.46111514	4)(19.5016290	7)(0.02283162	26)(0.0254696	36)(0.0123324	83)(0.1750962	78)(0.0157461	88)(0.111182366)
J ₈		-7476.802093	-7873.51207	1 -8371.0894	8 -11531.077	29 -8638.1895	29 -8567.7922	79 -8461.8527	199 -1247 1.544	99 -10836.756	93 -10864.240	65 -11921.105	51 -11261.2529	95 -11017.4581	9 -11363.5197	73 -7712.3764	23 -9103.97442	4 -7289.48315	3 -7716.47848	81 -11715.118	43 -10802.042	84 -7922 3836	73 -827 1.9354	56 -12347.43418
	((648.3654776)(503.113889.	3)(779.63169	/2)(30/.05844	(79)(533.70110	(489.80477	05)(682.14302	256)(158.43998	15)(498.97424	52)(528.49155	92)(319.68411	14)(332.981889	77)(352.27523)	9)(396.684764	17)(673.41674	68)(629.067260	3)(588.012845	1)(519.325519	99)(392.40309	57)(383.82918	/8)(534.77025	65)(686.29461	67)(208.9940377)
ſg		-6.364340621	-6.613834318	8 -7.2741924 5712 105040	96 -8.84112/0	00/13 011303	45 -6.6248219	44 -6.1177652	239 -7.4904750	14 -8.8540347:	52 -8.8540165	67 -8.7243425 M3VLL 252075	(19 -8.83359849 (A) (11 2800500	99 -8.85317484	9-8.85212120	6 -5.7131042	39 -8.42785938	7 11.8004588	5 -6.42/61185	91 -8.7549914	13 -8.8540521	-3.8633633	14 -7.2525/80	07 -8.832262084
		74 54975359	27 62462030	3 27 973440	64 28 \$20727	40 28 437764	04/(14.110808	54 08 10468	040/11.3014210	A 28 582830	13)(11:280147	03)(11.2329/3	(11.2800390 36 38 \$745443	22 28 571240	0 28 543457	(13.249283 M 27 300070	50 16 8660004	7 A 34406660	7 76 580324	10 28 483364	7 28 583566	45 23 420010	24/(13.42/3//	03)(11.23921778)
л	0	-20.34873338	-27.6246203	0/7 111581	54 -26.329121 5) (6.3807103	49 -28.431764	75//21174257	39 -28.129083	71 14 705865	14 -28.382830	02 -28.381930 45V6 2022200	107-23.848707	30-28.3/43443 9) (6:300707070	52 -28 37 12005 507 6 30001 563	19 -28.3034372	4 -27.300079. www.mmmaa.se	39 -10.8009004	2 -4.3440000	W -26.389324	29 -28.483364	11 -28.583500	13 -23.4200190 1700 \$361756	50 -27.413090	28 -28.34008083
		0.651086007	0.430374850	0.6003087	5) (0.280/102 83 0.7331030	30 0 4049331	15 0 7220301	30 0 6814711	01 07150003	0.6402366	43,0.2923199	011 07384354	8) (0.290/9/9/9/ MS 0.71718454	0 07353000	6 0 72512701	0.0.6104055	68 72 67346703	0//2/22/ 44003	6/(d 93293990 0 37805189	2 0 3157724	17 0 5854007	27)(9:3361736	3 0 5054970	53 0 732208016
f_1	1	0.553088246	V0 58956778/	tvn \$330108	7) (0 5517051	4110 5657878	15 -0.7229301 x5)(0 5437806	83V0 5461130	058VD 5458315	58V0 5587856	8510 5467308	3810 5484351	731/0 56438145	2 -0173330993	3/0 54116403	0.05345184	86)(74)(752225	243.0964280 2V108.703957	5\(0.5191240)	16VD 6415914	+7 -0.5850092 11V0 5300055	13 3300141022 18\(A 9309867)	3 -0.3934870 (3VD \$390101)	241(0.548130483)
	-	2 375745683	1 510031686	0.81756060	0.0000498/	41 1 1 3887 773	0 1 08101261	6 26131310	02 205302505	2 0.08632360	0 0.04806171	16 0.0007614	A 0.00000774	2 0.07390107	3 0 0000088	6 1 50282541	1 3473265160	15022643.1/	2 14736545	5 0 20080653	8 0 12124667	7 18 1620718	0 1 13357405	6 A7557 38780
f_1	2	(2.850960856	02.154711219	9)(1.2972955	05XL32181E4	05)(1.2041591	84)(2.1656440	97)(3.6348567	28) (562235782	9)(0.2995325	8) (0.1767199	21)(0.0002357	95)(1.09208E-0	6)(0.05979734	U)(3.87911E-0	6)(1.3254238	66)(35,7852699	1)(24577491.0	3)(17583594	\$4)(0.4234507	3)(0.3215124	05)(10.057331)	27 X 1.0582397	46)(190322.4214)
		7.528102918	11.54428374	5.38022001	8 0.00066863	31 3.17804620	15 5.34348062	27 10.814778	42 451382341	6 0.00380031	4 0.00186866	01 0.0101217	6 4.50175E-0	5 6.34555E-0	5 0.00012633	3.66195233	8 333.0155183	7358392.06	4 18.2321845	7 0.71544777	6 0.02862016	3 257 285993	5 5.85425404	3 527.9210413
л	3	(11.50730323)(12.5903624)	(10.275901)	86)(0.0001380	84)(5.0358116	92)(5.5840410	18)(19.744628	348)(611339756	7)(0.0071304	06)(0.0045634	181)(0.0023090	03)(2.01955E-0	05)(1.65034E-0	5)(2.92279E-0	5)(4.5890887	75)(304.291694	1)(4794487.12	9)(21.7020884	49)(1.5719041)	51)(0.0717667	46)(118.57767)	07)(7.4786650	87)(2359.940113)
	-	1.734470721	1.772821551	1.23017296	7 1.07200652	27 1.69312721	6 1.80611897	77 1.1651674	77 0.75478161	5 1.29294709	8 1.04801529	99 0.7808229	9 0.83386678	9 1.24236400	4 0.83855132	6 1.46316430	4 2.630454628	0.99349036	1.34892083	3 1.25029966	6 1.65184391	2 1.53551205	9 1.04570170	7 0.871834862
n	4 ((1.392570373)(1.516523557	7)(0.5555074	49)(0.6559369	32)(1.6617522	65)(1.3454790	48)(0.5961497	785)(0.1725307) (1.0769297)	8) (0.5728219	44)(0.1748236	51)(0.30990154	45)(1.22480640	7)(0.34400519	1)(0.8575582	42)(3.71182793	4)(0.54726003	5)(0.87095073	38)(1.9922920)	06)(1.3033677	15)(1.4179197)	09)(0.6835656	82)(0.346950096)
	(0.000643324	0.001546119	0.00078456	5 0.00076578	87 0.00225089	0.00192114	41 0.0011978	92 0.00163926	0.00053597	4 0.00041770	04 0.0011010	53 0.00058024	9 0.00058028	0.00063437	0.00070720	0.001545556	0.00122558	9 0.00141198	3 0.00049618	4 0.00044154	9 0.00065642	7 0.00047939	2 0.000871313
<i>J</i> 1	5 ((0.000543038)(0.00444480)	2)(0.00086432	2) (0.0008550	92)(0.0058185) (0.0035324	18)(0.0018247	97)(0.0019529)	2)(0.0003726	44)(0.0002851	76)(0.0011794	48)(0.00040009	97)(0.00036255	9)(0.00038560	7)(0.0005430	25)(0.00445630	8)(6.87867E-0	6)(0.00385569	99)(0.0003863)	88)(0.0003451)	9)(0.0004320	9) (0.0003079	43)(0.0004467)
		-1.92447213	-1.92447326	3 -1.92447087	75 -1.9244682	07 -1.9244391	14 -1.9244290	01 -1.9244556	64 -1.9242806	31 -1.9244735	16 -1.9244735	29 -1.9244542	75 -1.92447334	48 -1.92447290	4 -1.92447222	4 -1.9244721	13 -1.92447354	3 -1.92447336	-1.92447250	15 -1.9244735	43 -1.9244735	28 -1.9244732	15 -1.9244730	16 -1.92447352
71	6 ((0.579460448)(0.57946060	6)(0.5794604	81)(0.5794584	149)(0.5794595	93)(0.5794580	44)(0.5794587	793)(0.5796582	0.5794606	35)(0.5794606	28)(0.5794577	91)(0.57946062	25)(0.57946051	6)(0.57946052	8)(0.5794606	42)(0.57946063	2)(0.57946062	9)(0.57946053	3) (0.5794606	32)(0.5794606	32)(0.5794606	13)(0.5794605	43)(0.579460633)
	3	3.786952682	3.786952414	3.78695308	9 3.78695382	21 3.78696015	53 3.78696585	55 3.7869566	82 3.78700702	5 3.78695235	3.78695234	47 3.7869621	3.78695240	3 3.78695256	3.78695259	6 3.78695268	8 3786952343	3.786952393	5 3.78695256	3.78695320	7 3.78695234	6 3.78695242	6 3.78695243	3 3.786952348
Л	<i>'</i> ((2.374931079)(2.374931153	5)(2.3749310)	35)(2.3749304	66)(2.3749296	82)(2.3749280	26)(2.3749302	239)(2.3749403	99)(2.3749311	65)(2.3749311	68)(2.3749316	08)(2.37493114	47)(2.37493112	9)(2.37493113	2)(2.3749310	83)(2.37493116	9)(2.37493116	1)(2.37493110	6)(2.3749332	16)(2.3749311	57)(2.3749311	53)(2.3749311	41)(2.374931167)
~		4.575031533	4.574971819	4.57509881	1 4.57528203	35 4.5763558	4.5775390	16 4.5758580	15 4.58871513	3 4.57495840	4 4.57495820	05 4.5763717	22 4.57496781	3 4.57500120	5 4.57501100	4.57502868	9 6.005761337	4.574969199	4.57500895	8 4.57495705	4.57495781	3 4.57497477	7 4.57497969	2 4.57495876
	° ((1.117668123)(1.11765800	5)(1.1176990)	09)(1.1176510	66)(1.1177966	11)(1.1182084	18)(1.1178430	077)(1.1123805	59)(1.1176566	73)(1.1176566	511)(1.1180187	27)(1.11765998	8) (1.1176575)	(1.11765570	2)(1.1176635	85)(6.14484409) (1.11765997	4)(111766400	01)(1.1176565	5) (1.1176566	08)(1.1176615	09)(1.1176624	02)(1.117656655)
0 0		-3.552067105	-3.552080968	8 -3.55205040	08 -3.5519969	44 -3.5516735	03 -3.5386704	34 -3.5518829	96 -3.5500953	-3.5520836	16 -3.5520835	93 3.5517497	07 -3 55208093	-3.55207431	5 -3.55206429	8 -3.5520657	88 -3.55208411	7 -3.55208096	9 -3.55207226	\$5 -3.5520840	1 -3.5520838	98 -3.5520798	11 -3.5520785	13 -3.552083673
	^ ((1.903081577)(1.903089133	3)(1.9030755	19)(1.9030550	44)(1.9028860	76)(1.9153774	118)(1.9030202	205)(1.9019509	12)(1.9030903	89)(1.9030905	34)(1.902932	25)(1.90308957	/8)(Y.50308751	7)(1.90308285	5)(1.9030816	11)(1.90309072	2)(1.90308904	1)(1.90308563	33)(1.9030906	08)(1.9030906	05)(1.9030889)	29)(1.9030890	15)(1.903090478)

Theoretical Motivation 1

- 1. A **search space** contains the <u>set of all possible solutions</u>.
- 2. An **objective function** determines the <u>quality of solution</u>.
- 3. A (Mathematical idealized) metaheuristic determines the <u>sampling order (i.e. enumerates i.e. without replacement)</u>. It is a (approximate) permutation. What are we learning?
- **4. Performance measure** *P* (*a*, *f*) depend only on y1, y2, y3
- 5. <u>Aim find a solution with a near-optimal objective value using a</u> Metaheuristic <u>ANY QUESTIONS BEFORE NEXT SLIDE</u>?

Theoretical Motivation 2

 $P(a, f) = P(a \sigma, \sigma^{-1} f) \qquad P(A, F) = P(A\sigma, \sigma^{-1} F) \text{ (i.e. permute bins)}$ P is a **performance measure**, (based only on output values). $\sigma, \sigma^{-1} \text{ are a permutation and inverse permutation.}$ A and F are probability distributions over algorithms and functions). F is a problem class. ASSUMPTIONS IMPLICATIONS 1. Metaheuristic a applied to function $\sigma\sigma^{-1}f$ (that is f)

⁰ 2. Metaheuristic $\mathbf{a}\sigma$ applied to function $\sigma^{-1}f$ precisely identical.

Ground Movements at Airport

Fig. 2 Different routes from the exit of runway 14 to pier A

Automated Bug Fixing.

80.0	isothine ja - Editai	
	dirac Commit/ any estyles of existent / bundles / any estyles area unanticative / and / anal / active / butter	1
10.00	Ver Turk	1
	<pre>if first [first termin = print decide () first termin = print decide ()</pre>	· · · · · · · · · · · · · · · · · · ·

Table 1: Sets of single operators available to the GI. One member of a given set can be changed to another member of the same set.

Description	Operations
Numerical constants	Can increment by ± 1
Arithmetic operators	+, -, *, /, //, %, **
Arithmetic assignments	+ =, - =, * =, / =,
Relational operators	<,>,<=,>=,==,!=,
	is, is not, not
Logical operators	and, or
Logical constants	True, False

- Machine learning
- detect bug location
- suggest bug fix

The ti And tehre	me of magicians ha probably never we	as passed. re any, to						
fool very were very could trick	there three Terre	h made to ere really glers who hem, and						
that is wi wizards an The lo the White	Ignore All Add to Dictionary Edit Dictionary	iere were er feet as y – the						
through th	Add to AutoCorrect 🔹 🕨	there						
hear the	Language 🕨 🕨	three						
March Har	Spellcheck Dialog	Тегге						
never-end the Queen	Spellcheck Options 🕨	More						
auests to execution - once more the pia-								

Heart disease predictor.

Fig 1.4.1. Distribution of the %risk of suffering CHD event over the next 10 years in general population of men aged between 40 and 70 years

((kwargs['kvk_10'] * einst['FAMILYMI_Y']) +

((kwargs['kvk_11'] * einst['PREVSMOKER']) +

(((kwargs['kvk_12'] * (einst['CHOL'] kwargs['kvk_13'])) * einst['SMOKER']) +

((kwargs['kvk_14'] * einst['DM2']) -

((kwargs['kvk_15'] * einst['SPORTSCURRENT']) -

(kwargs['kvk_16'] * ((einst['HDL'] einst['DM2']) / kwargs['kvk_17'])))))))))

Fig 1.4.2. Distribution of the %risk of suffering CHD event over the next 10 years in general population of men aged between 40 and 70 years

A Paradigm Shift?

Algorithms investigated/unit time

One person	One person proposes a
proposes one	family of algorithms
algorithm	and tests them
and tests it	in the context of
in isolation.	a problem class.
Human cost (INFLATION)	machine cost MOORE'S LAW
conventional approach	new approach

- Previously one person proposes one algorithm
- Now one person proposes a set of algorithms
- Analogous to "industrial revolution" from hand made to machine made. Automatic Design.

Thank you. Any questions.

• Applications

- Airport ground movements.
- Software engineering
- Medicine heart disease indicator

j.wooward@qmul.ac.uk

Head of Operational Research GROUP http://or.qmul.ac.uk/

I currently teach on programme at BUPT

Previously at University Nottingham Ningbo China

http://gpbib.cs.ucl.ac.uk/gp-html/index.html (40th / 10,000. 2nd largest AI BIB)

https://scholar.google.co.uk/citations?user=iZIjJ80AAAAJ&hl=en

https://gow.epsrc.ukri.org/NGBOViewPerson.aspx?PersonId=-485755

Summary