‘*Qs’ Queen Mary

rsity of London

ADRIAN BEVAN

GRADNET MACHINE LEARNING AND Al WORKSHOP:
INTRODUCTION TO PYTHON AND TENSOFLOW

NEURAL NETWORKS (NNs)

GRADNET-Al: NEURAL NETWORKS 2

LECTURE PLAN

» Perceptrons

» Activation functions

» Artificial Neural Network
» Multilayer Perceptrons

» Training

4 Summa ry 'Note that this has been written to support
| a TensorFlow-based tutorial, and where
appropriate there are some TensorFlow
related remarks made.

‘-Q_a’ Queen Mary

University of London

A. Bevan

GRADNET-Al: NEURAL NETWORKS

PERCEPTRONS

» Rosenblatt!! coined the concept of a perceptron as a probabilistic model for
information storage and organisation in the brain.

» Origins in trying to understand how information from the retina is

processed . Simplified view of Fig 1 from Rosenblatt’s paper.
Projection R
. area R R
Retina (response 2 esponses
function) Rs

» Start with inputs from different cells.

» Process those data: "if the sum of excitatory or inhibitory impulse

intensities is either equal to or greater than the threshold (0) ... then
the A unit fires”.

» This is an all or nothing response-based system.

‘a_@_a’ Queen Mary

University of London

[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. A Bevan

GRADNET-Al: NEURAL NETWORKS

PERCEPTRONS

» This picture can be generalised as follows:
» Take some number, n, of input features

» Compute the sum of each of the features multiplied by
some factor assigned to it to indicate the importance of
that information.

» Compare the sum against some reference threshold.

» Give a positive output above some threshold.

‘Q_s’ Queen Mary

University of London

A. Bevan

[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958.

GRADNET-Al: NEURAL NETWORKS

PERCEPTRONS

» lllustrative example:
» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the
perceptron is to give an output (value = 1) or not (value

= 0).
W1
141 — 0
+ = <
1
WX 2 —

‘Q_a’ Queen Mary

University of London

A. Bevan

[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958.

GRADNET-Al: NEURAL NETWORKS

PERCEPTRONS

» lllustrative example:
» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the
perceptron is to give an output (value = 1) or not (value

= 0).

>, > 6 Output

w2

‘-Q_a’ Queen Mary

University of London

A. Bevan

[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958.

GRADNET-Al: NEURAL NETWORKS

PERCEPTRONS

» lllustrative example:
» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the
perceptron is to give an output (value = 1) or not (value

= 0).
If wixy + woxy >0
Output = 1
else
Output =0

‘Q_a’ Queen Mary

University of London

A. Bevan

[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958.

GRADNET-Al: NEURAL NETWORKS

PERCEPTRONS

» lllustrative example:
» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the
perceptron is to give an output (value = 1) or not (value

= 0).

If wixy + woxy >0

OUtpUt = 1 ' This is called a 5
 binary activation |
function |

else

Output =0

‘Q_a’ Queen Mary

University of London

A. Bevan

[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958.

GRADNET-AIl: NEURAL NETWORKS

PERCEPTRONS I particle physics we often use machine

learning to suppress background. Here
y=1 corresponds to signal and y=0
w1 =0 corresponds to background.

» lllustrative example:

» Decision is made on x»

» Output value is either
1 or 0 as some f(x1, x2)
that depends on the
values of wq, w» and 6.

-1.0

1.0

‘Q_s’ Queen Mary

University of London

A. Bevan

[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958.

GRADNET-Al: NEURAL NETWORKS 10

PERCEPTRONS

» lllustrative examples:

| Shift decision Ia

L=

Baseline for comparison,
decision only on value of x |

— _

' Rotate decision
plane in (

‘Qs’ Queen Mary

University of London

A. Bevan

[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958.

GRADNET-Al: NEURAL NETWORKS 11

PERCEPTRONS

» lllustrative example:
» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the

perceptron is to give an output (value = 1) or not (value
= 0).

» We can generalise the problem to N quantities as
N
y=1r Z w;x; + 0
i=1

= f(w z +0)

‘Q_a’ Queen Mary

University of London

[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. A Bevan

GRADNET-Al: NEURAL NETWORKS 12

PERCEPTRONS

» lllustrative example:

» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the

perceptron is to give an output (value = 1) or not (value
= 0).

» We can generalise the problem to N quantities as

' The argument is |
just the same
functional form §
of Fisher’s |
discriminant.

N
y=11 sz‘%-F@
i=1

= f(w z +0)

‘Q_a’ Queen Mary

University of London

[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. A Bevan

GRADNET-Al: NEURAL NETWORKS 13

PERCEPTRONS

» The problem of determining the weights remains (we will
discuss optimisation later on).

» For now assume that we can use some heuristic to choose
weights that are deemed to be “optimal” for the task of
providing a response given some input data example.

‘Q_s’ Queen Mary

University of London

[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. A Bevan

GRADNET-Al: NEURAL NETWORKS

14

ACTIVATION FUNCTIONS

» The binary activation function of Rosenblatt is just one
type of activation function.

» This gives an all or nothing response.

» It can be useful to provide an output that is continuous
between these two extremes.

» For that we require additional forms of activation
function.

nnnnnnnnnnnnnnnnn

GRADNET-Al: NEURAL NETWORKS

ACTIVATION FUNCTIONS

» TensorFlow has the following activation functions (see tf.nn.ACTIVATIONFUNCTION) e.g.
» relu (covered here)
» leaky_relu (covered here)
» relué
» crelu
» elu
» selu
» softplus
» softsign
» dropout
» bias_add
» sigmoid (covered here)
» tanh (covered here)

\Q_a’ Queen Mary

University of London

A. Bevan

GRADNET-AIl: NEURAL NETWORKS 16

ACTIVATION FUNCTIONS: LOGISTIC (OR SIGMOID)

» A common activation function used in neural networks:

1
1+ 6wT:c—|—9

1
1+ elwiz1twaza+0)

10 -1.0

nnnnnnnnnnnnnnnnn

GRADNET-Al: NEURAL NETWORKS 17

ACTIVATION FUNCTIONS: LOGISTIC (OR SIGMOID) e

» A common activation function used in neural networks:

O =0 0 =-5 .i“’mrc»)tate “decision
boundary” in (x1, x2)

=

TTT— e

|
]l

| Baseline for comparison,

decision only on value of x2 |

. __

nnnnnnnnnnnnnnnnn

GRADNET-Al: NEURAL NETWORKS 18

ACTIVATION FUNCTIONS: RADIAL BASIS FUNCTION

» A common activation function used in neural networks:

y(X)
~

0.6/

041

0 02 04 06 08 1
X

» Very similar to the hyperbolic tan in the way that y varies
from O to 1.

nnnnnnnnnnnnnnnnn

GRADNET-Al: NEURAL NETWORKS 19

ACTIVATION FUNCTIONS: HYPERBOLIC TANGENT

» A common activation function used in neural networks:

y = tanh(w' = + 0)
= tanh(wix1 + woxs + 6)

(Often used with 6 = 0)

nnnnnnnnnnnnnnnnn

GRADNET-Al: NEURAL NETWORKS 20

ACTIVATION FUNCTIONS: HYPERBOLIC TANGENT tenb(wra: + woa: +)

» A common activation function used in neural networks:

1.00
0.95

W1 = 1
Wo = 1
W =0 Wo = 1 0 =-1| Offset (vertically) from
zero using 6

6 =0 6 =0 -

rotate “decision
boundary” in (x1, x2

—===

| Baseline for comparison, (
decision only on value of x; |

_

d
% Queen Mary
University of London

A. Bevan

GRADNET-Al: NEURAL NETWORKS 21

ACTIVATION FUNCTIONS: RELU

» The Rectified Linear Unit activation function is commonly
used for CNNs. This is given by a conditional: 4

» f(x<0)y=0 /

0 X

» otherwisey = x

d
% Queen Mary
University of London

A. Bevan

GRADNET-Al: NEURAL NETWORKS 22

ACTIVATION FUNCTIONS: RELU

» The Rectified Linear Unit activation function is commonly
used for CNNs. This is given by a conditional: |

>

» f(x<0)y=0

» otherwisey = x

1o 10

wi=1wry=0 wi=1,wy=0.5
ey
%O Queen Mary

University of London

Importance of features in the perceptron still
depend on weights as illustrated in these plots.

A. Bevan

GRADNET-AI: NEURAL NETWORKS 23
ACTIVATION FUNCTIONS: PRELU VARIANT

» The RelU activation function can be modified to avoid gradient singularities.

» This is the PReLU or Leaky RelLU activation function o1

» If (x <0)y=a*x

» otherwise y = x g

» Collectively we can write the (P)ReLU activation function as

f(z) = max(0,x) + amin(0, x)

» Can be used effectively for need CNNs (more than 8 convolution layers),
whereas the RelLU activation function can have convergence issues for such a
configuration2l,

» If aissmall (0.01) it is referred to as a leaky ReLU function!'l. The default

implementation in TensorFlow has a=0.2[31,

ey
[11 Maas, Hannun, Ng, ICML201 3. YaY Q_u_een Mary
[21 He, Zhang, Ren and Sun, arXiv:1502.01852 University of London

A.B
[3]1 See https://github.com/tensorflow/tensorflow/blob/r1.8/tensorflow/python/ops/nn_ops.py o

https://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf
https://arxiv.org/abs/1502.01852
https://github.com/tensorflow/tensorflow/blob/r1.8/tensorflow/python/ops/nn_ops.py

GRADNET-Al: NEURAL NETWORKS 24

ACTIVATION FUNCTIONS: RELU

» Performs better than a sigmoid for a number of
applicationsl1l.

» Weights for a relu are typically initialised with a truncated
normal, OK for shallow CNNs, but there are convergence
issues with deep CNNs when using this initialisation
approachlil,

initial = tf.truncated normal(shape, stddev=0.1)

» Other initialisation schemes have been proposed to avoid
this issue for deep CNNs (more than 8 conv layers) as
discussed in Ref [2].

‘Q_s’Queen Mary

[Maas, Hannun, Ng, ICML201 3. ”/:ive:tv"fm"“"
[21 He, Zhang, Ren and Sun, arXiv:1502.01852 '

https://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf
https://arxiv.org/abs/1502.01852

GRADNET-Al: NEURAL NETWORKS 25

ACTIVATION FUNCTIONS: RELU

» N.B. Gradient descent optimisation algorithms will not
change the weights for an activation function if the initial
weight is set to zero.

» This is why a truncated normal is used for initialisation,
rather than a Gaussian that has xg[-oo, o].

y y
0.5 r 0.5 r

0.4}

1 6_(53—,“)2/202 0.35—

0.4+

\Q_a’ Queen Mary
[1] Maasl Hannun, Ngl ICMLZO'] 3. University of London

21 He, Zhang, Ren and Sun, arXiv:1502.01852 A

https://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf
https://arxiv.org/abs/1502.01852

GRADNET-Al: NEURAL NETWORKS 26

ACTIVATION FUNCTIONS: RELU

» N.B. Gradient descent optimisation algorithms will not
change the weights for an activation function if the initial
weight is set to zero.

» This is why a truncated normal is used for initialisation,

rather than a Gaussian that has xe[-o,]. TensorFlow default
parameters for the
o.sy_— O.Sy_— truncated normal are:
0,41 0.4] b =0.0
3 1 ; c=1.0
6_(53—,“)2/202 0.3}
o\ 2 :
0.2F
E— o1}
P —4 -2 0 2 4 i
\Q_a’ Queen Mary
[1] Maasl Hannun, Ngl ICMLZO'] 3. University of London

A. Bevan

21 He, Zhang, Ren and Sun, arXiv:1502.01852

https://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf
https://arxiv.org/abs/1502.01852

GRADNET-Al: NEURAL NETWORKS 27

ACTIVATION FUNCTIONS: DATA PREPARATION

» Input features are arbitrary; whereas activation functions have a
standardised input domain of [-1, 1] or [0, 1].

» Limits the range with which we have to adjust hyper-
parameters to find an optimal solution.

» Avoids large or small hyper-parameters.

» Other algorithms have more stringent requirements for data-
preprocessing when being fed into them.

» All these points indicate that we need to prepare data
appropriately before feeding it into a perceptron, and
hence network.

nnnnnnnnnnnnnnnnn

GRADNET-AI: NEURAL NETWORKS 28
ACTIVATION FUNCTIONS: DATA PREPARATION

» Input features are arbitrary; whereas activation functions have a standardised input domain
of [-1,1] or [0, 1].

» We can map our input feature space onto a standardised domain that matches some
range that matches that of the activation function.

» Saves work for the optimiser in determining hyper-parameters.

» Standardises weights to avoid numerical inaccuracies; and set common starting weights.

— R——

1‘ » e.g.

O(10-12) to obtain an O(1) result for w;x;.

» Mapping eV +—TeV would translate 1012 eV +— 1TeV, and allow for O(1) weights
leading to an O(1) result for wix;.

» Comparing weights for features that are standardised allows the user to develop an
intuition as to what the corresponding activation function will look like.

_ — . s - — B ———

= —— p—
%O Queen Mary
University of London

A. Bevan

GRADNET-Al: NEURAL NETWORKS 29

ACTIVATION FUNCTIONS: DATA PREPARATION

» A good paper to read on data preparation is [1]. This includes the
following suggestions:

» Standardising input features onto [-1, 1] results in faster optimisation
using gradient descent algorithms.

» Shift the features to have a mean value of zero.

» Itis also possible to speed up optimisation by de-correlating input
variables’.

» Having done this one can also scale the features to have a similar
variance.

— - —_— = — = — = — —

i 'Decorrelation of features is not essential assuming a sufficiently general optimisation algorithm is being used. The
rationale is that if one can decorrelate features then we have to minimise the cost as a function of weights for one feature
ata time, rather than the whole N dimensional feature space. See equivalent example with the BDT in TMVA. ‘

L _ _

‘-Q_a’ Queen Mary

University of London

[1] LeCun et al., Efficient BackProp, Neural Networks Tricks of the Trade, Springer 1998 A.Bevan

http://yann.lecun.com/exdb/publis/index.html#lecun-98b

GRADNET-Al: NEURAL NETWORKS 30

ACTIVATION FUNCTIONS: DATA PREPARATION

1. Shift the distribution to have a zero mean

» e.g.
2. Decorrelate input features
A ® o A 3. Scale to match covariance of features.
... ® Mean
‘ .
0e0 Cancellation
U
%
.E@
°0 KL
Expansion
A A
Covariance
Equalization
o
o
og0 ® > ® :I‘T;H
C WX

‘a;_ Queen Mary

rsity of London

[1] LeCun et al., Efficient BackProp, Neural Networks Tricks of the Trade, Springer 1998 (Fig. 3) A.Bevan

http://yann.lecun.com/exdb/publis/index.html#lecun-98b

GRADNET-Al: NEURAL NETWORKS 31

ARTIFICIAL NEURAL NETWORKS (ANNs)

» A ssingle perceptron can be thought of as defining a

hyperplane that separates the input feature space into two
regions.

A binary threshold activation function is
an equivalent algorithm to cutting on a
fisher discriminant to distinguish
between types of training example.

F=wla+p

The only real difference is the heuristic
used to determine the weights.

‘Q_s’ Queen Mary

University of London

A. Bevan

GRADNET-AI: NEURAL NETWORKS 32
ARTIFICIAL NEURAL NETWORKS (ANNs)

» A single perceptron can be thought of as defining a hyperplane that separates the
input feature space into two regions.

» This is a literal illustration for the binary threshold perceptron.

» The other perceptrons discussed have a gradual transition from one region to
the other.

» We can combine perceptrons to impose multiple hyperplanes on the input feature
space to divide the data into different regions.

» Such a system is an artificial neural network. There are various forms of ANNs; in
HEP this is usually synonymous with a multi-layer perceptron (MLP).

» An MLP has multiple layers of perceptrons; the outputs of the first layer of
perceptrons are fed into a subsequent layer, and so on. Ultimately the

responses of the final layer are brought together to compute an overall value
for the network response.

‘Q_s’ Queen Mary

University of London

A. Bevan

GRADNET-Al: NEURAL NETWORKS 33

MULTILAYER PERCEPTRONS

» lllustrative example: Input data example: z = {z1,z2,23,...,2,}

' —7
) K\ﬁ S~

ANNZe NI
K

/

Input layer of n perceptrons;
one for each dimension of the v Queen Mary
input feature space University of London

/

A. Bevan

GRADNET-AI: NEURAL NETWORKS

34

MULTILAYER PERCEPTRONS

» lllustrative example: Input data example: z = {z1, 22, 23, . ..

X, \.f 7\
BN 2
ST o

Xn
/ Hidden layer of some number
Input layer of n perceptrons;
tor each dimension of the of perceptrons, M; at least one A
one . . .
for each dimension of the input S8 S}ggﬁf?on';{'ary

A. Bevan

input feature space
P P feature space.

GRADNET-Al: NEURAL NETWORKS 35

MULTILAYER PERCEPTRONS

» lllustrative example: Input data example: z = {z1,z2,23,...,2,}

X, \.5 7\
BN 2
ST o

|

Output layer of perceptrons;
one for each output type. In
this case the network has

Xn
T only one output.
/ Hidden layer of some number
Input layer of n perceptrons;
tor each dimension of the of perceptrons, M; at least one A
one : : :
for each dimension of the input S8 S}ggﬁﬂ,,&{'afy

A. Bevan

input feature space
P P feature space.

GRADNET-Al: NEURAL NETWORKS 36

TRAINING

» Parameter tuning is referred to as training.

» A perceptron of the form f(wTx+6) has n+1=dim(x)+1 hyper-
parameters to be tuned.

» The input layer of perceptrons in an MLP has n(n+1) hyper
parameters to be tuned.

» ... and so on.

» We tune parameters based on some metric'! called the loss
function.

» We optimise the hyper-parameters of a network in order to
minimise the loss function for an ensemble of data.

‘Q_s’ Queen Mary

University of London

1Also called a figure of merit. The general term when applied to machine learning is the loss function. A. Bevan

GRADNET-Al: NEURAL NETWORKS 37

TRAINING AN MLP

1. Define an algorithm to assign an error to a given set of weights.
2. Define the procedure for terminating training, based on the computed error, or other information.

3. Guess an initial set of weights to test the classification process.

4. Evaluate the error defined in step (1) for a given set of data containing (preferably) equal numbers of
target types for signal and background.

5. Determine a new set of weights based on mis-classified events.
6. Iterate the last two steps until the convergence criteria defined in step (2) has been reached.

7. Validate the weights obtained via this procedure (see section 9.4.4).

\Q_a’ Queen Mary

University of London

A. Bevan

GRADNET-Al: NEURAL NETWORKS

38

TRAINING A MLP

» Consider a single perceptron with the L2 loss function:

» For the ith event: /tr”e('abe')va'“e
| 2

error »€; —

prediction

‘-Q_a’ Queen Mary

University of London

A. Bevan

GRADNET-Al: NEURAL NETWORKS

TRAINING A MLP: LOSS FUNCTIONS

» Consider a single perceptron with the L2 loss function:

39

» Forthe N events the total loss function is the sum of
losses for each individual event.

|
DO |
7=
~~
S
|
=
~—
Do

d
% Queen Mary
University of London

A. Bevan

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 40

HYPERPARAMETER OPTIMISATION: LOSS FUNCTIONS

» L2 loss:

» This is like a X2 term, but without the error normalisation and
a factor of 1/2.

N :
e=) 5(%’ — ;)
i=1

N = number of examples
yi = Model output for the ith example

ti = True target type for the ith example (label values)

» The L1 norm loss function is as above, without the factor of
1/2 or square.

d
% Queen Mary
University of London

A. Bevan

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 41

HYPERPARAMETER OPTIMISATION: LOSS FUNCTIONS
» Mean Square Error (MSE) loss:

» Very similar to the L2 norm loss function; just normalise
the L2 norm loss by the number of training examples to
compute an average.

|
= — i — 1)
e N;(y)

N = number of examples
yi = Model output for the ith example

t; = True target type for the ith example (label values)

d
% Queen Mary
University of London

A. Bevan

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 42

HYPERPARAMETER OPTIMISATION: LOSS FUNCTIONS

» Cross Entropy:

» This loss function is inspired by the likelihood for
observing either target value P(t|z) = yt(1 — 3)1 7Y

» From the likelihood L of observing the training data set
we can compute the -InL as

e=— Z " Iny"™ + (1 —¢")In(1 — y™)]

n = number of examples

t = target type (0 or 1) depending on example (label values)

y = output prediction of model

d
% Queen Mary
University of London

A. Bevan

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS

43

HYPERPARAMETER OPTIMISATION: GRADIENT DESCENT

» Newtonian gradient descent is a simple concept.

» Guess an initial value for the weight parameter: wy.
y =&

25_‘

20F
15F
10F

S

d
% Queen Mary
University of London

A. Bevan

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS b4

HYPERPARAMETER OPTIMISATION: GRADIENT DESCENT

» Newtonian gradient descent is a simple concept.

» Estimate the gradient at that point (tangent to the curve)

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 45

HYPERPARAMETER OPTIMISATION: GRADIENT DESCENT

» Newtonian gradient descent is a simple concept.

» Compute Aw such that Ay is negative (to move toward
the minimum)

a is the learning rate: a small positive number

dy
WO
Choose AW = —a—= to ensure Ay is always negative. Q° %ﬁsyeofrlnmary

dw A. Bevan

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS

46

HYPERPARAMETER OPTIMISATION: GRADIENT DESCENT

» Newtonian gradient descent is a simple concept.

» Compute a new weight value: w1 = wo+Aw
y =&
25

20f
155—
lof
st

......... -"""A"W

-4 -2 " 2 Wi Wo

a is the learning rate: a small positive number

dy
WO
Choose AW = —a—= to ensure Ay is always negative. Q° %\gs?yeofrl.]onmary

dw A. Bevan

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS

47

HYPERPARAMETER OPTIMISATION: GRADIENT DESCENT

» Newtonian gradient descent is a simple concept.

» Repeat until some convergence criteria is satisfied.
y =€
25

20}

15F

Wh W2 Wi Wo

a is the learning rate: a small positive number

dy
WO
Choose AW = —a—= to ensure Ay is always negative. Q° %\ggyeofrl.]onmary

dw A. Bevan

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 48

HYPERPARAMETER OPTIMISATION: GRADIENT DESCENT

» We can extend this from a one parameter optimisation to a
2 parameter one, and follow the same principles, now in 2D.

V-5

° ° 5 B ° ° ° °
» The successive points wi+1 can be visualised a bit like a ball
rolling down a concave hill into the region of the minimum.

d
% Queen Mary
University of London

A. Bevan

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 49

HYPERPARAMETER OPTIMISATION: GRADIENT DESCENT

» In general for an n-dimensional hyperspace of hyper
parameters we can follow the same brute force approach
using:

Ay = AwVy

dy 2 dy 2 dy 2]
= —Q | 4+ ...
dwlﬂ; de,i dwn,i
» where

Wit1 = W; + Aw

= w; —aVy

3 dy 2 dy 2 dy 27
= W; — & (dw1,i> +(dw2,i> +...(dwn,7j

nnnnnnnnnnnnnnnnn

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 50

HYPERPARAMETER OPTIMISATION: BACK PROPAGATION

» The delta-rule or back propagation method is used for
NNs to determine the weights; based on gradient descent.

» For a regularisation problem* we use the L2 norm loss
function (with or without the factor of 1/2):

yi is the model output for example x;

N
1 2
<= Z i(yz o t"/) t is the corresponding label for the

1=1 ith example

» We can compute the derivative of the £ with respect to the

Welg htS as. 852- 857; Derivatives depend on the
and activation function(s) used
5’w 89 in the model y(x)

d
% Queen Mary
University of London

A.Bevan
*Either this or cross entropy are used for the classification problems.

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS o1

HYPERPARAMETER OPTIMISATION: BACK PROPAGATION

» The parameters w and O are updated using:

N
Oe
Wt =w" -« E Z -
Ow where a is the small
1=1 positive learning rate
N
Oe
or Tt = 9" — o E -
— 00

» The derivatives can be re-written in terms of the “errors” on the weights, and the
errors on w and O can be related to each other.

» Back propagation involves:
» A forward pass where weights are fixed and the model predictions are made*.

» This is followed by the backward pass where the errors on the bias parameters
are computed and used to determine the errors on the weights. These in turn
are then used to update the HPs from epoch r to epoch r+1.

‘Q_a’ Queen Mary

University of London

:) A.B
*Weights are randomly initialised for the whole network. o

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS

52

HYPERPARAMETER OPTIMISATION

» Consider the examples of an MLP to approximate the
function f(x) = x2and how the convergence depends on
the learning rate.

Network Response Function Network Response Function

100 100
80 |- 80 |
= i x i
?, 60 £ 60
«I? 40 Tu' 40 -
x 20f X 20t
(S ol
—20 - L L _20 1 ! |
-10 -5 0 5 10 -10 -5 0 5 10
2000000 — . , X . . 6000000 : : X
®
5000000 |-¢
1500000 i .
4000000} ®
% 1000000 | R 2 3000000 % _
-.'.. 2000000 | i
500000 |- i
'o'~q - 1000000 | 1 OO epochs -
0 - L 0 L 1 | |

0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch

A small learning rate means the convergence
takes much longer (a x10 reduction in the
learning rate will require a x10 increase in

optimisation steps »,
P ps) %O Queen Mary

University of London

Too large a learning rate and the optimisation
does not always lead to an improved cost; the
small change approximation breaks down.

A.Bevan
This example uses an L2 loss function and is a neural network with 1 input, a single layer of 50 nodes and 1 output; implemented in TensorFlow.

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS

53

HYPERPARAMETER OPTIMISATION

» Consider the examples of an MLP to approximate the
function f(x) = x2and how the convergence depends on

the learning rate.

Network Response Function

100

80 |

= sqrt(x)

f(x)

2000000 T T X
1500000 |

1%
3 1000000 |-

500000 |
og®

0 20 40
epoch

Too large a learning rate and the optimisation
does not always lead to an improved cost; the

0 .‘\-\-‘———h

100

small change approximation breaks down.

100 Network Response Function

= sqrt(x)

f(x)

a=0.01

1000 epochs |

0 200 400 600 800 1000
epoch

A small learning rate means the convergence
takes much longer (a x10 reduction in the
learning rate will require a X 0 increase in
optimisation steps) %Q Queen Mary

University of London

A. Bevan

This example uses an L2 loss function and is a neural network with 1 input, a single layer of 50 nodes and 1 output; implemented in TensorFlow.

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 54

HYPERPARAMETER OPTIMISATION: STOCHASTIC LEARNING!

Advantages of Stochastic Learning
1. Stochastic learning is usually much faster than batch learning.
2. Stochastic learning also often results in better solutions.
3. Stochastic learning can be used for tracking changes.

» Data are inherently noisy.
» Individual training examples can be used to estimate the gradient.

» Training examples tend to cluster, so processing a batch of training
data, one example at a time results in sampling the ensemble in such
a way to have faster optimisation performance.

» Noise in the data can help the optimisation algorithm avoid getting
locked into local minima.

» Often results in better optimisation performance than batch learning.

‘Q_a’ Queen Mary

University of London

[1] LeCun et al., Efficient BackProp, Neural Networks Tricks of the Trade, Springer 1998 A.Bevan

http://yann.lecun.com/exdb/publis/index.html#lecun-98b

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 55

HYPERPARAMETER OPTIMISATION: BATCH LEARNING!

Advantages of Batch Learning
1. Conditions of convergence are well understood.
2. Many acceleration techniques (e.g. conjugate gradient) only op-
erate in batch learning.
3. Theoretical analysis of the weight dynamics and convergence
rates are simpler.

» Data are inherently noisy.

» Can use a sample of training data to estimate the gradient for minimisation
(see later) to minimise the effect of this noise.

» The sample of data is used to obtain a better estimate the gradient
» This is referred to as batch learning.

» Can use mini-batches of data to speed up optimisation, which is
motivated by the observation that for many problems there are clusters of
similar training examples.

%O Queen Mary

University of London

[1] LeCun et al., Efficient BackProp, Neural Networks Tricks of the Trade, Springer 1998 A.Bevan

http://yann.lecun.com/exdb/publis/index.html#lecun-98b

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 56

HYPERPARAMETER OPTIMISATION: BATCH LEARNING

» Returning to the example f(x) = x2;
» optimising on 1/4 of the data at a time (4 batches) leads to accelerated

optimisation relative to optimising on all the data each epoch.

Network Response Function

Network Response Function 100

100

f(x) = sqrt(x)
f(x) = sqrt(x)

loss

200 400 600 800 1000
epoch

200 400 600 800 1000
epoch

Training with all the data and a learning rate Batch training (4 batches) with all the data

of 0.01. and a learning rate of 0.01.,
%O Queen Mary

University of London

A.Bevan
This example uses an L2 loss function and is a neural network with 1 input, a single layer of 50 nodes and 1 output; implemented in TensorFlow.

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 57

GRADIENT DESCENT: REFLECTION

» For a problem with a parabolic minimum and an appropriate
learning rate, g, to fix the step size, we can guarantee
convergence to a sensible minimum in some number of steps.

» If we translate the distribution to a fixed scale, then all of a
sudden we can predict how many steps it will take to
converge to the minimum from some distance away from it
for a given a.

» If the problem hyperspace is not parabolic, this becomes
more complicated.

‘a_@_a’ Queen Mary

University of London

[1] LeCun et al., Efficient BackProp, Neural Networks Tricks of the Trade, Springer 1998 A.Bevan

http://yann.lecun.com/exdb/publis/index.html#lecun-98b

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 58

GRADIENT DESCENT: REFLECTION

» Based on the underlying nature of the gradient descent optimisation algorithm
family, being derived to optimise a parabolic distribution, ideally we want to try
and standardise the input distributions to a neural network.

» Use a unit Gaussian as a standard e.g.:
» maps x to x' = (x-p)/o;
» Scale x’ to the range [-1, 1].

» The transformed data inputs will be scale invariant in the sense that HPs such
as the learning rate will be come general, rather than problem (and therefore
scale) dependent.

» If we don't do this the optimisation algorithm will work, but it may take
longer to converge to the minimum, and could be more susceptible to
divergent behaviour.

‘Q_s’ Queen Mary

University of London

[1] LeCun et al., Efficient BackProp, Neural Networks Tricks of the Trade, Springer 1998 A.Bevan

http://yann.lecun.com/exdb/publis/index.html#lecun-98b

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS

59

OVERTRAINING

» Data are noisy.

» Optimisation can result in learning the noise in the training data.

» Overtraining is the term given to learning the noise, and this can be
mitigated in a number of different ways:

» Using more training data (not always possible).

» Checking against different data sets to identify the onset of learning

noise.
» Changing the network configuration when training (dropout).
» Weight regularisation (large weights are penalised in the cost).

» None of these methods guarantees that you avoid over training.
‘a_@_a’ Queen Mary

University of London

A. Bevan

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS

OVERTRAINING

» A model is over fitted if the HPs that have been
determined are tuned to the statistical fluctuations in the
data set.

» Simple illustration of the problem:

- 1

30 training examples ' The decision boundary selected here

,h does a good job of separating the red

and blue dots.

0.9

0.8
0.7
0.6

05 Boundaries like this can be obtained by

training models on limited data
samples. The accuracies can be
impressive.
I
' But would the performance be as good |
with a new, or a larger data sample?

0.4

0.3

0.2

0.1

‘Q_a’ Queen Mary

University of London

A. Bevan

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS

61

OVERTRAINING

» A model is over fitted if the HPs that have been
determined are tuned to the statistical fluctuations in the
data set.

» Simple illustration of the problem:

- | o1
0of- 30 training examples 0021000 tralnmg ex.a-mpl_es .
.) _I‘ " .'. ..ll:-,J.‘ :. ':- . i-.
N 08 e TR R E
1 . -.-: Y . ‘_' . -'-_fl.'.l“-_.‘ n.._."-.-.:-. . =%
" 0.7 L, L .-.',-."..I.:"‘E'-.. i Sl LY
.o. L ::\-.-I"_\.'H.\" -h.. -.-% .. ,.I-"t '.-:.-
06 0.6 ..l.’.'f‘. Y .i.. :E- 1y ™ o up ‘:'“'. l.l:-l l'.,
. ... X 3 ’_" L _*-.- -..-'.‘
" 05 g ;—.!-.'." —e

0.2

0.1

OO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 Increasmg to 1000 tramlng examples we can see the boundary doesn t

| do as well. This illustrates the kind of problem encountered when we
l overfit HPs of a model.
| , _

\Q_s’ Queen Mary

University of London

e ———] A. Bevan

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 62

OVERTRAINING: TRAINING VALIDATION

» One way to avoid tuning to statistical fluctuations in the data is to
impose a training convergence criteria based on a data sample
independent from the training set: a validation sample.

» Use the cost evaluated for the training and validation samples to
check to see if the HPs are over trained.

» If both samples have similar cost then the model response function
is similar on two statistically independent samples.

» If the samples are large enough then one could reasonably assume
that the response function would then be general when applied to
an unseen data sample.

» “large enough” is a model and problem dependent constraint.

‘a_@_a’ Queen Mary

University of London

A. Bevan

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 63

OVERTRAINING: TRAINING VALIDATION

» Training convergence criteria that could be used:
» Terminate training after Nepochs
» Cost comparison:
» Evaluate the performance on the training and validation sets.

» Compare the two and place some threshold on the difference
ACOSt < Scost

» Terminate the training when the gradient of the cost function with
respect to the weights is below some threshold.

» Terminate the training when the Acost starts to increase for the

validation sample.
‘a_@_a’ Queen Mary

University of London

A. Bevan

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 64

OVERTRAINING: TRAINING VALIDATION: EXAMPLE HIGGS KAGGLE DATA

» This example shows the Higgs Kaggle (H—71) with an
overtrained neural network.

500 . . . : 0.80

Hyper parameters are not
optimal, but test and train

450 + 0.75}

samples give similar
performance.

400 + 0.70

The test sample (green) has a
consistently high cost value
relative to the train sample (blue). -

/

2 350} 0.65|
8

65% accuracy
attained before

Accuracy on training and test sets

00T 0.60 overtraining starts
250+ 0.55}
Overtrained network Overtrained network
[> [>
200 Il Il Il 1 0_50 1 1 1 1
0 200 400 600 800 1000 0 200 400 600 800 1000
Epoch Epoch

This example uses all features of the data set, but only 2000 test/train events with a learning rate of 0.001 and dropout is not

being used. The network has a single layer with 256 nodes and a single output to classify if a given event is signal or background
. . . . *

There is no batch training used for this example. v Queen Mary

University of London

A. Bevan

See https://pprc.gmul.ac.uk/~bevan/teaching/PML.html for example code for this problem

https://pprc.qmul.ac.uk/~bevan/teaching/PML.html

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS

65

OVERTRAINING: TRAINING VALIDATION: EXAMPLE HIGGS KAGGLE DATA

» Continuing to train an over-trained network does not
resolve the issue - the network remains over-trained.

500

450 +

400

350

300

Cost

250 +
200 +
150}
100}

50

Overtrained network

>

0 2000 4000 6000 8000
Epoch

10000

Accuracy on training and test sets

1.0

0.9+

0.8

0.7H

0.5}

0.4

65% ac'curacy
attained before

overtraining starts

Overtrained network

>

0

2000

4000

6000 8000
Epoch

10000

In this case the level of overtraining continues to increase and the difference in the performance of the train and test samples in
terms of accuracy increases. After 10000 training cycles we have an accuracy of over 93% for the train sample, but less than 70%
for the test sample. This is not a good configuration to use on unseen data as the outcome is unpredictable.

For this example we should terminate after about 200 epochs, while the test/train performance

remain similar and have an accuracy of 70%. Other network configurations may be better.

See https://pprc.gmul.ac.uk/~bevan/teaching/PML.html for example code for this problem

University of London

A. Bevan

‘Q_a’ Queen Mary

https://pprc.qmul.ac.uk/~bevan/teaching/PML.html

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 66

OVERTRAINING: DROPOUT FOR DEEP NETWORKS

» A pragmatic way to mitigate overfitting is to compromise the model
randomly in different epochs of the training by removing units from the

network.

| Dropout is used
during training;

{ —
)
(O

\
\\}

when evaluating
predictions with
'the validation or
unseen data the “
full network of Fig.
(a) is used. |

7
g
X
'c‘
(0
X
\&

¢
AX
(/ \)

(X
DK
X X
(N

o
X
{_TX
K
K
\ /

%

g’ ’Z

K (X

O

/,4/ 0}‘
2\

I

’
"
e
e
"
A\

\\ |

</

A
%

0\
\/
Q
¥
A
v,
»

(a) Standard Neural Net (b) After applying dropout.
» That way the whole model will be effectively trained on a sub-sample of the
data in the hope that the effect of statistical fluctuations will be limited.

» This does not remove the possibility that a model is overtrained, as with the
previous discussion HP generalisation is promoted by using this method.

\Q_a’ Queen Mary

University of London

Srivastava et al., J. Machine Learning Research 15 (2014) 1929-1958 A.Bevan

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS

OVERTRAINING: DROPOUT FOR DEEP NETWORKS

» A variety of architectures has been explored with different training samples
(see Ref [1] for details).

30 Al T
y , : , , ¢—¢ With dropout
25 JT H Without dl'OpOUt
. . . 25 i
| —— Without dropout — 20f
2.0HH R AR R s e S
< |l : : : z 5
5 A\ : E ‘ A A “) X o
5 \ ‘) “l./' A v‘}\éls . _“/?W ‘f‘A 4‘9 ,\’ % g
c A/ W A N \V = : AR A - ,/‘ ; “‘.,v,r"\ "‘ "‘-\ “ > prar] 15
£ [NV MR
v . H H H —
%1_5.. s b JYSTOEE F— s SR g
S | AWy o - With dropout S 10}
VS VAV.
\‘A‘ W&ﬁ;ﬁ‘«\,&‘\ﬁ ?:.’l\}\\ {\;\,!A N \
A A A A A R
1 0 TR B sadd 7t 20\ e VS °
; ; ; ; 0 3 v 5
0 200000 400000 600000 800000 1000000 10 10 10 10
Number of weight updates Dataset size

» Dropout can be detrimental for small training samples, however in general
the results show that dropout is beneficial.

» For deep networks or typical training samples O(500) examples or more this

technique is expected to be beneficial.
‘Q_a’ Queen Mary

University of London

[11 Srivastava et al., J. Machine Learning Research 15 (2014) 1929-1958 A.Bevan

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 68

OVERTRAINING: DROPOUT: EXAMPLE HIGGS KAGGLE DATA

» Changing the drop out keep probability from 0.9 to 0.7 stops the
network becoming overtrained in the first 1000 epochs.

500 0.75

0.70
450 -

0.65
400 -

~73% accuracy

0.60 | attained without

Cost

overtraining for
1000 epochs, keep
probability of 0.7
and a learning rate
of 0.001

350+

Accuracy on training and test sets

300+
0.50

250 1 1 1 1 0.45 1 1 1 1
0 200 400 600 800 1000 0 200 400 600 800 1000

Epoch Epoch

» A better accuracy is attained for this network using dropout; above 70%.

‘Q_a’ Queen Mary

University of London

A. Bevan

See https://pprc.gmul.ac.uk/~bevan/teaching/PML.html for example code for this problem

https://pprc.qmul.ac.uk/~bevan/teaching/PML.html

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 69

OVERTRAINING: WEIGHT REGULARISATION FOR NEURAL NETWORKS

» Weight regularisation involves adding a penalty term to the loss
function used to optimise the HPs of a network.

» This term is based on the sum of the weights w; (including bias
parameters) in the network and takes the form:

A Z Wi This is the L1 norm regularisation term.
1=Vwerghts

» The rationale is to add an additional cost term to the optimisation
coming from the complexity of the network.

» The performance of the network will vary as a function of A.

» To optimise a network using weight regularisation it will have to be
trained a number of times in order to identify the value corresponding

to the min(cost) from the set of trained solutions.
‘a_@_a’ Queen Mary

University of London

See Ch. 9 of Bishop’s Neural Network for Pattern Recognition
Loshchilov, Frank Hutter, arXiv:1711.05101

A. Bevan

https://arxiv.org/abs/1711.05101

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 70

OVERTRAINING: WEIGHT REGULARISATION FOR NEURAL NETWORKS

» Weight regularisation involves adding a penalty term to the loss
function used to optimise the HPs of a network.

» This term is based on the sum of the weights w; (including bias
parameters) in the network and takes the form:

\ E : w2 This variant is the L2 norm
t regularisation term; also know as

1=V, weights weight decay regularisation.
» The rationale is to add an additional cost term to the optimisation
coming from the complexity of the network.

» The performance of the network will vary as a function of A.

» To optimise a network using weight regularisation it will have to be
trained a number of times in order to identify the value corresponding

to the min(cost) from the set of trained solutions.
‘a_@_a’ Queen Mary

University of London

See Ch. 9 of Bishop’s Neural Network for Pattern Recognition
Loshchilov, Frank Hutter, arXiv:1711.05101

A. Bevan

https://arxiv.org/abs/1711.05101

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 71

OVERTRAINING: WEIGHT REGULARISATION FOR NEURAL NETWORKS

» For example we can consider extending an MSE cost function
to allow for weight regularisation. The MSE cost is given by:

| N
= - i — i)’
e =~ ;(y)
» To allow for regularisation we add the sum of weights term:
1 = 2 2
SZNZ(%—E‘) +A DY w;
1=1 1=V, wetghts

» This is a simple modification to make to the NN training
process that adds a penalty for the inclusion of non-zero
weights in the network.

\-Q_a’ Queen Mary
See Ch. 9 of Bishop’s Neural Network for Pattern Recognition Uriversity of London

Loshchilov, Frank Hutter, arXiv:1711.05101

A. Bevan

https://arxiv.org/abs/1711.05101

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 72

OVER FITTING: CROSS VALIDATION

» An alternative way of thinking about the problem is to assume

that the response function of the model will have some bias and
some variance.

» The bias will be irreducible and mean that the predictions

made will have some systematic effect related to the average
output value.

» The variance will depend on the size of the training sample,
and we would like to know what this is.

We can use cross validation to estimate the prediction error.

Any prediction bias can be measured using control samples.

d
%Qy Queen Mary
Geisser, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc., 70:320-328. erstyottonon

For a review of cross validation see: S. Arlot and A. Celisse, Statistics Surveys Vol. 4 4079 (2010). A Bevan

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 73

OVER FITTING: CROSS VALIDATION

» Application of this concept to machine learning can be
seen via k-fold cross validation and its variants*

» Divide the data sample for training and
validation into k equal sub-samples.

validation

validation

» From these one can prepare k sets of
validation samples and residual training
samples.

validation

validation

validation

» Each set uses all examples; but the
training and validation sub-sets are
distinct.

| *Variants include the extremes of leave 1 out CV and Hold out CV as well as leave p-out CV. These involve reserving 1 example, 50% of
1‘ examples and p examples for testing, and the remainder of data for training, respectively.

'L —— — — = — =

4
%Qy Queen Mary
Geisser, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc., 70:320-328. ety ertonden
For a review of cross validation see: S. Arlot and A. Celisse, Statistics Surveys Vol. 4 4079 (2010).

A. Bevan

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 74

OVER FITTING: CROSS VALIDATION

» Application of this concept to machine learning can be
seen via k-fold cross validation and its variants*

» One can then train the data on each of the k training
sets, validating the performance Of the network on the validation _
corresponding validation set.
» We can measure the model error on the validation set. - validation _
» The model prediction error is the average error _ validation _

obtained from the k folds on their corresponding

N "
validation sets.] vaticacon [N
» If desired we could combine the k models to compute _ validation

some average that would have a prediction

performance that is more robust than any of the
individual folds.

[—— = = — i — —a— — _ S——————

| *Variants include the extremes of leave 1 out CV and Hold out CV as well as leave p-out CV. These involve reserving 1 example, 50% of

1‘ examples and p examples for testing, and the remainder of data for training, respectively.

'L —— — — = — =

‘Q_a’ Queen Mary

Geisser, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc., 70:320-328, Umerstyeftonden

For a review of cross validation see: S. Arlot and A. Celisse, Statistics Surveys Vol. 4 4079 (2010).

A. Bevan

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 75

OVER FITTING: CROSS VALIDATION

» Application of this concept to machine learning can be
seen via k-fold cross validation and its variants*

ROC-Curve
» The ensemble of response function outputs SVM_Bos
. . . 0.9 =
will vary in analogy with the spread of a S L _1SVM Average
. . . . 0.8 SVM_Holdout_RBF
Gaussian distribution.

o
N

» This results in family of ROC curves; with a
representative performance that is neither the
best or worst ROC.

o o o
A O O

o
w

N IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|I T

» The example shown is for a Support Vector
Machine, with the best average and holdout
ROC curves to indicate some sense of spread.

(False negative rate) Backgr rejection (1-eff)
o
N

0.5 0.6 0.7 0.8 0.9 1
(True positive rate) Signal eff

o

[—— = - e e — —— — _ S——————

| *Variants include the extremes of leave 1 out CV and Hold out CV as well as leave p-out CV. These involve reserving 1 example, 50% of

| examples and p examples for testin , and the remainder of data for training, respectively.
\ p P P g g P y

,L —— — — = — =

4
%Q Queen Mary
Geisser, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc., 70:320-328. erstyottonon
For a review of cross validation see: S. Arlot and A. Celisse, Statistics Surveys Vol. 4 4079 (2010). A Bevan

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS

76

MULTIPLE MINIMA

» Often more complication hyperspace optimisation
problems are encountered, where there are multiple
minima.

The gradient descent
minimisation algorithm is based
on the assumption that there is
a single minimum to be found.

In reality there are often
multiple minima.

Sometimes the minima are
degenerate, or near
degenerate.

How do we know we have
converged on the global

minimum? YaY
One of several minima -85 8gs?yeofrgonmary

A. Bevan

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 77

MULTIPLE MINIMA

» Often more complication hyperspace optimisation
problems are encountered, where there are multiple
minima.

The gradient descent
minimisation algorithm is based
on the assumption that there is
a single minimum to be found.

In reality there are often
multiple minima.

Sometimes the minima are
degenerate, or near
degenerate.

How do we know we have
converged on the global
minimum?

Global minimum 2

‘Q_a’ Queen Mary

University of London

A. Bevan

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS

78

EXAMPLES: MNIST
» Consider the MNIST data.

Example: 1 Label: 3 Example: 3 Label: 6
Example: 2 Label: 4 0 T T T

5

10

15

20

25

5 10 15 20 25

Example: 4 Label: 1

» Each example is a 28x28 array of pixels (784 features).
» Each pixel is an integer between 0 and 255.

» Rescale [0, 255]-> [0, 1]
» How can we classify these numbers?

\-Q_a’ Queen Mary
[1] Neural Computation, Volume 22, Number 12, December 2010 Universty of London

. A. Bevan
http://yann.lecun.com/exdb/mnist/

https://arxiv.org/abs/1003.0358
http://yann.lecun.com/exdb/mnist/

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS

79

MULTICLASS CLASSIFICATION

» Set the output layer to have multiple nodes; each node is tasked with making a single classificaiton of
an example being of one type or not.

» The Nype = 10 perceptrons are used to make the following decisions:

The number 1 vs not the number 1
The number 2 vs not the number 2
The number 3 vs not the number 3
The number 4 vs not the number 4
The number 5 vs not the number 5
The number 6 vs not the number 6
The number 7 vs not the number 7
The number 8 vs not the number 8
The number 9 vs not the number 9

The number 0 vs not the number 0

http://yann.lecun.com/exdb/mnist/

1\4 For those with a statistical background,
this is like a null hypothesis and an
alternative hypothesis.

The null hypothesis provides a specific

response/expectation.
|

The alternative hypothesis is the

complement of the null.
I

| In this context you classify an example |
as a specific type, or you provide a |
decision that it is not that type.

— e —————S—— —

We will see more of the MNIST data when
talking about convolutional neural networks.

‘a_@_a’ Queen Mary

University of London

A. Bevan

http://yann.lecun.com/exdb/mnist/

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 80

MULTICLASS CLASSIFICATION

» An alternative representation is to use a softmax activation

function to encode the 10 outputs in a single function.

T o o . o o .
eW; & i is the index for the output classification

(@) = <

Zizl e’

The score for the ith output is normalised
by the sum of outputs.

B wfx 7 fi(x) is normalised to lie in the range [0, 1]

f () - 6
€T) —
Zé\; e ® 5

ewﬁx 0.0
» Can convert output to {0, 1}.

Example of the ith output of a softmax activation N
function for a 2D input feature space. %O Queen Mary

University of London

1.0

0.0

-1.0

1.0

http://yann.lecun.com/exdb/mnist/ A.Bevan

http://yann.lecun.com/exdb/mnist/

GRADNET-Al: NEURAL NETWORKS 81

SUMMARY

» Neural networks are built on perceptrons:

» Inspired by desire to understand the biological function of the
eye and how we perceive based on visual input.

» The output threshold of a perceptron can be all or nothing, or
be continuous between those extremes.

» Artificial neural networks are constructed from perceptrons.

» Perceptron/network weights need to be determined via some
optimisation process, called training.

» ... This leads us on to issues related to training and toward deep

neural networks.
‘Q_s’ Queen Mary

University of London

A. Bevan

GRADNET-Al: NEURAL NETWORKS 82

SUGGESTED READING

» The suggestions made here are for some of the standard text books on the subject. These require a higher level of math
than we use in this course, but may have less emphasis on the practical application of the methods we discuss here as a
consequence.

» MacKay: Information theory, inference and learning algorithms
» Chapter: V
» C.Bishop: Neural Networks for Pattern Recognition
» Chapters: 3 and 4
» C.Bishop: Pattern Recognition and Machine Learning
» Chapter: 5
» T.Hastie, R. Tibshirani, J. Friedman, Elements of statistical learning

» Chapter: 11

» In addition to books, you may find interesting articles posted on the preprint archive: https://arxiv.org. There are several
useful categories as part of the Computing Research Repository (CoRR) related to this course including Artificial
Intelligence. Note that these are research papers, so again they will generally have a strong mathematical content.

‘Q_a’ Queen Mary

University of London

A. Bevan

https://arxiv.org
https://arxiv.org/corr/home

GRADNET-Al: NEURAL NETWORKS

83

APPENDICES

‘Q_s’ Queen Mary

University of London

A. Bevan

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS

84

GRID SEARCHES

» Just as we can scan through a parameter in order to minimise a likelihood
ratio, we can scan through a HP to observe how the loss function changes.

» For simple models we can construct a 2D grid of points in m and c.

» Evaluating the loss function for each point in the 2D sample space we can
construct a grid from which to select the minimum value.

» The assumption here is that our grid spacing is sufficient for the purpose of

optimising the problem.
C 4
O 6 06 0060 0 O ;’hls typevof pari/lme’;e.r se:;dzlls oftelrfm usef:I for
upport Vector Machine HPs (kernel function
: : : : : : : parameters and cost). e.g. see libsvm.
O 00000600 The method does not scale to large numbers of
O 00600 00O parameters. It suffers from the curse of
00606000 dimensionality.
> M

‘-Q_a’ Queen Mary

University of London

A. Bevan

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 85

GRID SEARCHES

» e.g.consider a linear regression study optimising the parameters for the
model y=mx+c

» The loss function for this problem results in a “valley” as m and c are anti-
correlated parameters in this 2D hyperspace.

4503 e T T T ST T T L I e
4003 N o T T e Wy EEAEAESAS] | L1 F I+ 111
350 N _ -----------------
T D LT s] o T
82501 NN ST T LT LA TP T T N\ W I 5 o e == |
T s g 1 2
1503 NN T AT T T 7 \ R 7 A S S A e == s
NS 2 = 1.6
10047 *‘\%%\\‘:e: A 188 103 1.4
50 == 1.4 ;-2
0 = 1.2 o
S Y i 0.8
0 === 1 13
04 == (4]
06 058 =z 0.2 04
2 : .
—~ 14 02 | T T 7T , T 1 T , T 17T , |||||||||||||||
16 15 o 0 02 04 06 08 1 12 14 16 11 2 0
m

» The contours of the loss function show a minimum, but this is selected from a

discrete grid of points (need to ensure grid spacing is sufficient for your

s
needs). WO %ggyeﬁrlnld\o/nlary

A. Bevan

@ATLAS

EXPERIMENT

ATLAS-UK: NEURAL NETWORKS 86

ADAM OPTIMISER

» This is a stochastic gradient descent algorithm.
» Consider a model f(0) that is differentiable with respect to the HPs 0 so that:
» the gradient g = Vf{(0:.1) can be computed.
» tisthe training epoch
» m;and v; are biased values of the first and second moment
» my-hat and vi-hat are bias corrected estimator of the moments

» Some initial guess for the HP is taken: By, and the HPs for a given epoch
are denoted by 0;

» aisthe step size

» 31 and 32 are exponential decay rates of moving averages.
‘a_@_a’ Queen Mary

University of London

A.Bevan
Kingma and Ba, Proc. 3rd Int Conf. Learning Representations, San Diego, 2015

https://arxiv.org/abs/1412.6980

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS 87

ADAM OPTIMISER

» ADAptive Moment estimation based on gradient descent.

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2|for details,
and for a slightly more efficient (but less clear) order of computation. g7 indicates the elementwise
square g © g;. Good default settings for the tested machine learning problems are a = 0.001,
B1 = 0.9, B2 = 0.999 and € = 103, All operations on vectors are element-wise. With 8¢ and 3%
we denote (3; and 35 to the power .

Require: «: Stepsize
Require: (31,32 € [0,1): Exponential decay rates for the moment estimates
Require: f(6): Stochastic objective function with parameters ¢
Require: 6,: Initial parameter vector
mo < 0 (Initialize 1 moment vector)
vo + 0 (Initialize 2" moment vector)
t < 0 (Initialize timestep)
while 6, not converged do
t<—t+1
gt < Vo fi(0:—1) (Get gradients w.r.t. stochastic objective at timestep)
my < 1 -me—1 + (1 — B1) - g« (Update biased first moment estimate)
vy < P2 vi_1 + (1 — B2) - g? (Update biased second raw moment estimate)
my < my/(1 — B%) (Compute bias-corrected first moment estimate)
vy < v /(1 — %) (Compute bias-corrected second raw moment estimate)
0; < 0,1 — -y /(V/V; + €) (Update parameters)
end while
return 0, (Resulting parameters)

\Qs’ Queen Mary

University of London

A. Bevan

Kingma and Ba, Proc. 3rd Int Conf. Learning Representations, San Diego, 2015

https://arxiv.org/abs/1412.6980

@ATLAS

EXPERIMENT
ATLAS-UK: NEURAL NETWORKS

88

ADAM OPTIMISER

» Benchmarking performance using MNIST and CFAR10 data
indicates that Adam with dropout minimises the loss function
compared with other optimisers tested.

10

1 MNIST Multilayer Neural Network + dropout CIFAR10 ConvNet

_AdaGrad 102 —AdaGrad
\ — RMSProp — AdaGrad+dropout
‘ — SGDNesterov — SGDNesterov
— AdaDelta 201 beeeeneebornrenensbennessessisessasens —— SGDNesterov+dropout| |
— — Adam
—— Adam+dropout
10° T S T T
2 @
8 g
5 2
= 10 o NN T
‘© o
102 WA] : : : : : : : :
10-2_ _
10'3 ..
L L L 10” 5 1io fs 2io 2 3io 3is 4io 45
0 50 100 150 200 0 >

))) iterations over entire dataset
iterations over entire dataset

» Faster drop off in cost, and lower overall cost obtained.

‘Q_a’ Queen Mary

University of London

A.Bevan
Kingma and Ba, Proc. 3rd Int Conf. Learning Representations, San Diego, 2015

https://arxiv.org/abs/1412.6980

