Alkistis Pourtsidou
Queen Mary, University of London

a8 il#
o 7 B o,
- " 2 : Af‘:’;
-) <o ¥ A\ LAY R
' :'."o““‘ O ’,; " b
ey)¢ By BT ALY
Bt SOy, &
; KoL)
b
- "t{' :
' . " ¢ L -
» -
. » 2 8"
¢ “ -
S
, ; 4
...A -
: 4

Image credit: Ha‘yden Planetarium, 2014

WHAT IS SQL?

SQL stands for Structured Query Language

+ 4+ 4+ 4+

+

Used to query (“talk t0”) a database server
Data manipulation, database creation
Almost all companies use databases to store their data

Have a look at the Indeed Job Search Engine...tens of
thousands of jobs mentioning SQL!

WHY DO WE NEED DATABASES?

+ 4+ s

Concurrency: multiple simultaneous changes to data
Data changes reqgularly

Large data sets but only need subsets

Sharing large data sets

Rapid queries

Data web interfaces (dynamic data)

WAYS TO USE SQL

Standard console command (e.g. mysql -u user -p dbname)
GUI interfaces often available

Interfaces to many programming languages (Python, R, ...)

+ + +

SQLite - use SQL without a database server: this is what we
are going to use in our tutorial

+

PostgreSQL - the world’s most advanced open source
database: we’ll see how that works later on

MORE ABOUT DATABASES

+ A database server can contain many databases

+ Basically, databases are collections of tables with rows
(observations) and columns (variables)

+ Limited mathematical operations available
4+ \Very good at combining information from several related tables

+ We’ll explore the above (and more) in detail

EXPLORING THE SERVER

A given server can support multiple databases

+ + +

Each database contains many tables
Each table contains many columns

But keeping things under control is straightforward!

» SHOW DATABASES;
» SHOW TABLES IN database;
» SHOW COLUMNS IN table;

» DESCRIBE table; - shows the columns and their
types

VARIABLE TYPES

+ SAQL supports a variety of different formats for storing information

Numeric
» INTEGER, SMALLINT, BIGINT

» NUMERIC(w,d), DECIMAL(w,d) - numbers with width
w and d decimal places

» REAL, DOUBLE PRECISION - machine and database
dependent

» FLOAT(p) - floating point number with p binary
digits of precision

VARIABLE TYPES

+ SAQL supports a variety of different formats for storing information

Character
» CHARACTER(L) - a fixed-length character of length L

» CHARACTER VARYING(L) or VARCHAR(L) - supports
maximum length of L

Binary

» BIT(L), BIT VARYING(L) - like corresponding
characters

» BINARY LARGE OBJECT(L) or BLOB(L)
Temporal

» DATE

» TIME

» TIMESTAMP

SQL: THE BASICS

+ Enough intro! Let’s dive into SQL with hands-on examples

+ We will use SQLite3, which is part of Python, for details see
https://www.pythoncentral.io/introduction-to-sqlite-in-python/

+ SAQLite is an embedded SQL database engine. It doesn’t have a
separate server process, which makes it really easy to use,
iImmediately.

+ Using Python (in the form of a Jupyter notebook) to run our SQL
code allows us to use Pandas for importing our results and make
everything look nice and clear!

import sqlite3
import pandas as pd

https://www.pythoncentral.io/introduction-to-sqlite-in-python/

SQL: THE BASICS

In this tutorial we'll be working with a dataset from the bike-sharing
service Hubway, which includes data on over 1.5 million trips made
with the service. We'll start by looking a little bit at databases, what

they are and why we use them, before starting to write some queries
of our own in SQL.

Download the file here hitps://dataguest.io/blog/large files/hubway.db

SQL: THE BASICS

+ Let’s first define a function that takes our query, stored as a string, as an input.

4+ Then shows the result as a formatted data frame (we’ll see this in action in a
bit...)

#connect to the database and open file
db = sglite3.connect('hubway.db')

def run query(query):
#Read SQL query into a DataFrame
return pd.read sql query(query,db)

SQL: THE BASICS

The SELECT command

Select is the most basic and frequently used command. It tells the

database which columns you want to see. Let's check out some
examples:

SQL: THE BASICS

#let's see the tables the database has
#and how they are called

query = "SELECT name FROM sqglite master \
hhere type='table';" #selects "name" column
run query(query)

SQL: THE BASICS

#let's see the tables the database has
#and how they are called

query = "SELECT name FROM sqglite master \
where type='table';" #selects "name" column
run_ query(query)

name
0 trips
1 stations

SQL: THE BASICS

"*" returns every column

query = "SELECT * FROM sglite master where type='table';"
#selects "name" column

run_query(query)

type name tbl_name rootpage sql
0 , . CREATE TABLE trips (id INTEGER,
e e L2 = duration INTEG...

1 CREATE TABLE stations (id INTEGER,

table stations stations 33340 station TEX...

SQL: THE BASICS

4+ As we saw, the database has two tables, TRIPS and
STATIONS. We will first work with the TRIPS table. Let’s see
what kind of information it contains:

query = 'SELECT * FROM trips LIMIT 5;°
run query(query)

SQL: THE BASICS

4+ See all columns:

query = 'SELECT * FROM trips LIMIT 5;'
run _query(query)

id duration start_date start_station end_date end_station bike_number sub_type zip_code birth_date gender
0 9 201110': or-a8 23 201110‘: 0728 23 B00468 Registered '97217 19760 Male
L 220 201110': gz:gg 23 201110‘: 275‘:38 23 BO0554 Registered '02215 1966.0
2 3 56 201110': 273‘:38 23 201110‘: gz":gg 23 B00456 Registered '02108 1943.0
3 4 64 201110': %75':33 23 201110‘: %':gg 23 BO0554 Registered '02116 1981.0
4 5 12 201110‘: 277':38 23 201110‘: 377‘:38 23 BO0554 Registered '97214 1983.0

SQL: THE BASICS

+ See specific columns:

query = 'SELECT duration, start date, gender FROM trips LIMIT 5;'

run_query(query)

duration start_date gender
0 9 2011-07-28 10:12:00 Male
1 220 2011-07-28 10:21:00 Male
2 56 2011-07-28 10:33:00 Male
3 64 2011-07-28 10:35:00 Female
& 12 2011-07-28 10:37:00 Female

SQL: THE BASICS

The ORDER BY command

This command allows you to sort the database on a given column - default is
ascending order. Let's use it to find out how long the longest trip lasted.

SQL: THE BASICS

+ DESC: Descending

query =

SELECT duration

FROM trips

ORDER BY duration DESC
LIMIT 10:

run query(query)

query =

SELECT duration

FROM trips

ORDER BY duration DESC
LIMIT 10;

run_query(query)

duration
0 9999
1 9998

2 9998

SQL: THE BASICS

+ The longest trip lasts
a bit less than 3
hours.

SQL: THE BASICS

The WHERE command

The WHERE command is used to specify a certain subset of data. For
example you could use the following command to return every trip with a
duration longer than 9990 seconds:

L B |

query =

SELECT *

FROM trips

WHERE duration > 9990;

run_ query(query)

SQL: THE BASICS

query =
SELECT *

FROM trips

WHERE duration > 9990;

run _query(query)

id duration start date start station end date end station bike number sub_type
0 2011-08- 2011-08-
4768 9994 03 22 03 24 B00002 Casua
17:16:00 20:03:00
1 2011-08- 2011-08-
8448 9991 06 52 06 24 B00174 Casua
13:02:00 15:48:00
2 2011-08- 2011-08-
11341 9998 09 40 09 42 B00513 Casua
10:42:00 13:29:00
3 2011-08- 2011-08-
24455 9995 20 52 20 17 B00552 Casua
12:20:00 15:07:00

SQL: THE BASICS

Let's use AND to specify two conditions: duration > 9990 and Registered user:

LI B |

query =

SELECT *

FROM trips

WHERE (duration >= 9990) AND (sub type = "Registered")

run_query(query)

id duration start_date start_station end_date end_station bike_number sub_type zi

0 2012-07- 2012-07-
315737 9995 03 12 03 12 B00250 Registered
18:28:00 21:15:00

SQL: THE BASICS

Now let's answer the question "How many trips were taken by registered users". We will use
the COUNT command:

LI B

query =
SELECT COUNT(id)

FROM trips

WHERE sub type = "Registered”;

run_query(query)

COUNT(id)

0 1105192

SQL: THE BASICS

Use AS to make this more informative/readable:

query =

SELECT COUNT(id) AS "Total Trips by Registered Users"
FROM trips

WHERE sub type = "Registered”;

run_query(query)

Total Trips by Registered Users

0 1105192

SQL: THE BASICS

Aggregate Functions

Aggregate functions include COUNT, SUM (returns the sum), AVG (returns the
average), MIN (returns the minimum), MAX (returns the maximum).

SQL: THE BASICS

query =
SELECT AVG(duration) AS "Average Duration”
FROM trips;

run query(query)

Average Duration

0 912.409682

SQL: THE BASICS

query =
SELECT MIN(duration) AS "Minimum Duration”
FROM trips;

run_ query(query)

Minimum Duration

0 0

SQL: THE BASICS

The GROUP BY command

GROUP BY separates the rows into groups based on the contents of a
particular column and allows us to perform aggregate functions on each

group. We'll use this to write a query to answer the question of whether
registered or casual users take longer trips.

SQL: THE BASICS

query =

SELECT sub type, AVG(duration) AS "Average Duration”
FROM trips

GROUP BY sub type;

GROUP BY sub type means the averages of

registered and casual users are calculated separately

run_query(query)

sub_type Average Duration

0 Casual 1519.643897

1 Registered 657.026067

SQL: THE BASICS

Now let's answer the question of which bike was used for the most trips:

L B)

query =

SELECT bike number as "Bike Number", COUNT(*)
AS "Number of Trips"”

FROM trips

GROUP BY bike number

ORDER BY COUNT(*) DESC

LIMIT 1;

run_query(query)

Bike Number Number of Trips

0 B00490 2120

SQL: THE BASICS

Arithmetic Operators

SQL allows us to use arithmetic operators. Let's use them to calculate the average duration
of trips by registered members under the age of 40:

SQL: THE BASICS

I B |

query =

SELECT AVG(duration)

FROM trips

WHERE (2018 - birth date) < 40;

run_query(query)

AVG(duration)

0 655.194481

SQL: THE BASICS

+ So far we'’ve been looking at queries pulling data from the
TRIPS table

+ But as you might remember there’s also the STATIONS table

+ The STATIONS table contains information about every station
In the Hubway network

+ It also includes an id column referenced by the TRIPS table
4+ So these tables can be combined to extract useful information

4+ Let’s have a look...

SQL: THE BASICS

r v

query =
SELECT *
FROM stations
LIMIT 3;

run _query(query)

id station municipality lat Ing
0 3 Colleges of the Fenway Boston 42.340021 -71.100812
1 4 Tremont St. at Berkeley St. Boston 42.345392 -71.069616
2 5 Northeastern U/ North Parking Lot Boston 42.341814 -71.090179

ID is a unique identifier for each station, corresponding to the
start_station and end_station columns in the TRIPS table

SQL: THE BASICS

<

Let’s say we want to know which station is the most
popular starting point

For that we need to combine information from both the TRIPS
and STATIONS tables

We will use the JOIN command

JOIN

JOIN helps us query information that is stored in different tables.

SQL: THE BASICS

We will use SELECT to return the station column from the stations table using the
table.column syntax, i.e. stations.station in our case

We also return the COUNT of the number of rows from the trips table

To tell the database how the stations and trips tables are connected, we’ll use JOIN and
ON.

JOIN specifies which tables should be connected
ON specifies which columns in each table are related

INNER JOIN means rows will only be returned where there is a much in the columns
specified by ON

Tables are connected ON trips.start_station = stations.id

Then we group by the station column so that COUNT will give the number of trips for
each station separately

Finally we ORDER BY descending order

SQL: THE BASICS

query =
SELECT stations.station AS "Station", COUNT(*) AS "Count”
FROM trips

INNER JOIN stations

ON trips.start station = stations.id

GROUP BY stations.station

ORDER BY COUNT(*) DESC

LIMIT 5:

run query(query)

SQL: THE BASICS

run_ query(query)

Station Count
0 South Station - 700 Atlantic Ave. 56123
1 Boston Public Library - 700 Boylston St. 41994
2 Charles Circle - Charles St. at Cambridge St. 35984
3 Beacon St / Mass Ave 35275
4 MIT at Mass Ave / Amherst St 33644

SQL: THE BASICS

+ Let’s slightly expand this query to see which are the most
popular round-trip stations:

L B |

query =

SELECT stations.station AS "Station", COUNT(*) AS "Count”
FROM trips

INNER JOIN stations

ON trips.start station = stations.id

WHERE trips.start station = trips.end station

GROUP BY stations.station

ORDER BY COUNT(*) DESC

LIMIT 5;

run_query(query)

EXERCISES/TASKS

+ Code up the queries we just learned in Jupyter and reproduce
the results

+ How many trips lasted more than half an hour? (this induces
extra charges)

+ Which bike was used for the least total time?
+ Did registered or casual users take more round trips?

+ Pick up any publicly available database and play with it!

PostgreSQL

+ PostgreSQL: “the world’s most advanced open source relational
database

+ Active development for 30 years now!

+ www.postgresqgl.org

4+ Installation: For MAC OS I strongly recommend using

Postgress.app, see https://www.calhoun.io/how-to-install-
postgresql-9-6-on-mac-0s-x/

+ For other systems, see https://www.dataquest.io/blog/sql-
intermediate/ and https://www.systems.ethz.ch/sites/default/files/
exla_postgresql_jupyter_setup.pdf (not tested...)

http://www.postgresql.org
https://www.calhoun.io/how-to-install-postgresql-9-6-on-mac-os-x/
https://www.calhoun.io/how-to-install-postgresql-9-6-on-mac-os-x/
https://www.calhoun.io/how-to-install-postgresql-9-6-on-mac-os-x/
https://www.dataquest.io/blog/sql-intermediate/
https://www.dataquest.io/blog/sql-intermediate/
https://www.systems.ethz.ch/sites/default/files/ex1a_postgresql_jupyter_setup.pdf
https://www.systems.ethz.ch/sites/default/files/ex1a_postgresql_jupyter_setup.pdf
https://www.systems.ethz.ch/sites/default/files/ex1a_postgresql_jupyter_setup.pdf

PostgreSQL

4+ First we need to create new user, database, and tables

+ Follow the instructions in https://www.dataguest.io/blog/sql-
intermediate/ to run psql, create a new user named ‘oracle’ (or
another name of your preference) and a new database

4+ The new database contains consumer complaints

4+ It has two tables: one for bank account complaints and one
for credit card complaints

https://www.dataquest.io/blog/sql-intermediate/
https://www.dataquest.io/blog/sql-intermediate/

PostgreSQL

+ We need to populate these with actual data!

+ We will use data from here https://data.world/dataquest/bank-
and-credit-card-complaints

+ Again, follow the instructions in https://www.dataquest.io/blog/
sgl-intermediate/ to load the data

+ They are CSV files

+ They have identical fields: complaint_id, date_received,
product, ..., issue, consumer_complaint_narrative, etc.

https://data.world/dataquest/bank-and-credit-card-complaints
https://data.world/dataquest/bank-and-credit-card-complaints
https://www.dataquest.io/blog/sql-intermediate/
https://www.dataquest.io/blog/sql-intermediate/

PostgreSQL

+ Before having a look and playing with the data, we need to
create two helper functions

4+ One to run queries and one to run commands

import pandas as pd
psycopg2 lets us easily run commands against our db

import psycopg2

conn = psycopg2.connect("dbname=consumer complaints user=oracle")
conn.autocommit = True

cur = conn.cursor()

def run command(command) :
cur.execute(command)
return cur.statusmessage

PostgreSQL

+ Before having a look and playing with the data, we need to
create two helper functions

4+ One to run queries and one to run commands

sqglalchemy is needed to allow pandas
ﬂto seemlessly connect to run queries

from sglalchemy import create_engine
engine = create_engine('postgresql://oracle@localhost/consumer complaints')

def run query(query):

return pd.read sql_query(query,con=engine)
T —

PostgreSQL

+ OK, now let’s test everything works OK.

+ First let’s see how the credit card complaints table looks like.

query = 'SELECT * FROM credit_ card complaints LIMIT 3;°
run_query(query)

complaint_id date_received product sub_product issue sub_issue ci
0 469026 2013-07-29 Credit None e None
card statement
1 . APR or
469131 2013-07-29 Credtt None interest None
card
rate
2 479990 2013-07-29 °redit e el None
card account

PostgreSQL

+ Then let’s get the number of records using the COUNT
function

+ Works well! (try the bank account complaints table to0)

query = 'SELECT count(*) FROM credit card complaints;'’
run_query(query)

count

0 87718

PostgreSQL

*

*

How to deal with NULL values

Let’s see how many records in each table have null values for
the consumer complaint narrative field

When comparing a column to null (no value), we cannot use
arithmetic operators. Instead we use IS NULL /IS NOT NULL.

U B)

query =
SELECT count(*) FROM credit card complaints
WHERE consumer complaint narrative IS NULL;

L B |

run_query(query)

count

0 70285

PostgreSQL: Views

+ So we just saw a large amount of records had null values for
the consumer complaint narrative field.

4+ Instead of having to filter on this field later, we’ll create a view
with this subset only.

+ Syntax is simple: CREATE VIEW view_name AS
[query to generate view];

U B

command =
CREATE VIEW credit card w _complaints AS

SELECT * FROM credit card complaints

WHERE consumer complaint narrative IS NOT NULL;

run_command (command)

PostgreSQL: Views

4+ Let’s have a look:

F

query =
SELECT * FROM credit card w_complaints LIMIT 3;

U B |

run_query(query)

complaint_id date_received product sub_product issue sub_issue consumer_complaint_nar
O 1207939 2015-03-24 Credt None Other None Hecelved Capital One c
card card offer XXX

1
Credit | 'm a longtime mem
1296693 2015-03-23 card None Rewards None Charter One Bank/i
2 1295056 2015-0323 Credt None Other None JERE L ATEheIC e

card

Discover Card C

PostgreSQL.: String Concatenation

Extremely useful, combines two or more strings (text values)
together to form a single string

For example say we have a “month” field and a “year” field but
we need to show “month-year” instead

Syntax: <string_1> || <string_2> name_of_table;

Let’s try it out with our credit card complaints table

Let’s select complaint_id, product, company, and concatenate
separated by a hyphen

PostgreSQL.: String Concatenation

L B

query =

SELECT complaint id, product, company,

complaint id || '-' || product || '-' || company AS concat

FROM credit card complaints
LIMIT 3

run_query(query)

complaint_id product company concat
0 469026 Credit card Citibank 469026-Credit card-Citibank
1 469131 Creditcard Synchrony Financial 469131-Credit card-Synchrony Financial

2 479990 Credit card Amex

479990-Credit card-Amex

PostgreSQL: Subqueries

+ Subqueries (“inline views”) create a mini view within a single
query

+ The best way to understand how they work is via an example:

query =
SELECT ccd.complaint id, ccd.product, ccd.company, ccd.zip code
FROM (SELECT complaint id, product, company, zip code

FROM credit card complaints

WHERE zip code = '91702"') ccd
LIMIT 3:

P

run_query(query)

complaint_id product company zip_code
0 599370 Creditcard Wells Fargo & Company 91702
1 16728 Credit card Bank of America 91702

2 1154512 Credit card PayPal Holdings, Inc. 91702

TASKS

+ Read about UNION/UNION ALL, and put them in action using
different views of the banking data

+ Same with INTERSECT/EXCEPT

+ EXxplore subqueries, for example by reproducing the
“Subqueries in action” examples in https://www.dataquest.io/
blog/sqal-intermediate/

+ Go through the SQL/Pandas tutorial in https://
www.dataquest.io/blog/python-pandas-databases/

https://www.dataquest.io/blog/sql-intermediate/
https://www.dataquest.io/blog/sql-intermediate/

REFERENCES

4+ Introduction to SQL https://www.stat.berkeley.edu/~spector/
sql.pdf

https://www.w3schools.com/sqgl/

http://www.sql-tutorial.net/

https://www.kaggle.com/learn/sq

https://www.dataquest.io/blog/sql-basics/

https://www.dataquest.io/blog/sql-intermediate/

+ 4+ s

https://www.dataquest.io/blog/python-pandas-databases/

https://www.stat.berkeley.edu/~spector/sql.pdf
https://www.stat.berkeley.edu/~spector/sql.pdf
https://www.w3schools.com/sql/
http://www.sql-tutorial.net/
https://www.kaggle.com/learn/sql
https://www.dataquest.io/blog/sql-intermediate/

