»

AN INTRODUCTION TO

REINFORCEMENT LEARNING

Alkistis Pourtsidou
Queen Mary, University of London

b ‘ Y e, i
o e A 2 oK 4!; "j’
. i " . -
- . "-'<“ ‘A\;i_ 1 ”';' s
R NG _’&,
",‘\“ - J' e _’.
e WIS g
> 4 é;’? .
-
!
i
o .
» Ohk
i -)
, ; 4
. ..t‘t
: 4
- _—

Image credit: Hayden Planetarium, 2014

REFERENCES AND TUTORIALS

This lecture is heavily based on the following resources:

*

*

Introduction to Reinforcement Learning lecture course by D. Silver

http://wwwOQ.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Hands on Machine Learning with Scikit Learn and TensorFlow by
A. Geron, see Chapter 16 and Github repo https://github.com/

ageron/handson-ml

Reinforcement Learning by S. Sutton and A. G. Barto https://
drive.google.com/file/d/1xeUDVGWGUUv1-
ccUMAZH]Lej2C7aAFWY/view

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://github.com/ageron/handson-ml
https://github.com/ageron/handson-ml

ABTTOFATSTORY

4+ Reinforcement Learning (RL) is one of the

oldest Machine Learning fields (1950s)

4+ Games revolution in 2013: Researchers
from the DeepMind startup built a system
that could play any Atari game

4+ In 2016, their system beat the world
champion of the Go game

4+ Wide range of applications today (games,
robots, cars,...)

4+ DeepMind was bought by Google for half
a billion dollars!

Computer Science

Engineering achine Neuroscience

Learning
Optimat Reward
Control System
Reinforcement
Learning
Operations, Classical/Operant
\ Researefi Conditioning

o Hounded
" er revehetosy

Economics

Image credit: D. Silver

THE MANY FACES OF RL

4+ Sits at the intersection of many different

fields

4 The science of decision making is very
general and fundamental

4+ Goal: understand optimal way to make
decisions

4 Basically same methods under different
names in engineering, neuroscience, etc.

RL L5 ABRANCH OF MACHINE LEARNING

In supervised learning, we have an input and a target value or class we
want to predict

In unsupervised learning, we only have an input and look for patterns in
that input

Reinforcement learning:

*

*

No supervisor, just reward signal

We train an agent to maximise a reward through interactions with an
environment

Time matters (more about that later) - e.g. decisions unfold over time

System is dynamic, non IID (basically independent and “static”) data.

REAL WORLD EXAMPLES OF RL USE

Self-driving cars

Manage investment portfolio - e.g. incoming stream of
data, has to make decisions on what to invest

Make a robot walk - room is the stream of data, falling
over or crashing at the wall is bad!

Control a power station - e.g. maximise power while
respecting regulations/laws

Learn to play computer games (better than humans)
without even knowing the rules - trial and error learning!

REAL WORLD EXAMPLES OF RLUSE

e Game example: Cather - catch the fruit before it reaches the floor

o We have the game environment (basically a game simulation), the
actions (joystick movements) and the RL algorithm learns to play it

e See htt

bs://edersantana.github.io/articles/keras_rl/ for code example

https://edersantana.github.io/articles/keras_rl/

REWARDS

+ + + o+

A reward R; is a scalar feedback signal: in simpler words, just a number
Indicates how well an agent is doing at time-step t

E.g. if you catch the fruit, R;= +1. If not, R;=-1

The agent’s job is to maximise cumulative (i.e. summed up) reward

Reinforcement Learning is based on the reward hypothesis:

Definition (Reward Hypothesis)

All goals can be described by the maximisation of expected
cumulative reward

REWARDS

A reward R is a scalar feedback signal: in simpler words, just a number
Indicates how well an agent is doing at step t
E.g. if you catch the fruit, R.= +1. If not, R, = -1

The agent’s job is to maximise cumulative (i.e. summed up) reward

+ 4+ 4+ o+ ¢

Reinforcement Learning is based on the reward hypothesis:

Definition (Reward Hypothesis)

All goals can be described by the maximisation of expected
cumulative reward

[
]: Question: What if the goal is time based, e.g. “achieve X in the shortest amount of

| time”. Any ideas on how we can define reward here?

| -

REWARDS EXAMPLES

4+ Self-driving car

4+ +1 for following desired trajectory

4+ -50 for crashing! (large negative reward)

4+ Robot walking

4 +1 for forward motion

4+ -50 for falling over!

4+ Playing Atari games
4+ + for winning points

4+ - for losing points

COMMON FRAMEWORK: SEQUENTTAL DECTSTON MAKING

4 Goal: select actions to maximise total future reward
4+ Actions may have long term consequences so need to think ahead

4+ Reward may be delayed!

4+ It may be better to sacrifice immediate reward to gain more long-
term reward

4+ Examples:
4+ An investment (may take months to mature)

4+ Fueling a helicopter (to prevent a crash in several hours)

THE AGENT

observation

A 1A action

Image credit: D. Silver

Via the RL algorithm, we are
controlling the agent (e.g. robot
with a camera)

Every step: the agent sees a
snapshot - observation - of what is
happening in “its world”

Gets reward signal

Has to make a decision - action

THE ENVIRONMENT

Based on slide by D. Silver

_|Agent |
[——
observation f/ "‘("N _‘g 7 ARV |) ;‘5'5; action
0, [\ Dy A, m At each step t the agent:
;w—ff/ =] Exec!Jtes action A.t
¥ m Receives observation O;
m Receives scalar reward R;

reward R,

m [he environment:

m Receives action A;
m Emits observation O;1
m Emits scalar reward Ry

m t increments at env. step

Environment

Example: Atari game, generates the next screen (observation)
and the score (reward).

THE ENVIRONMENT

observation j/ "‘/ e koA W action
— AN YT) c—
0, [\ o T A, m At each step t the agent:
\,,—,"/ =] Execytes action A.t
— m Receives observation O;
m Receives scalar reward R;
reward R,

m [he environment:

m Receives action A;
m Emits observation O;1
m Emits scalar reward R;y;

m t increments at env. step

i
A

Question: Does the agent (we) have control over the
| environment!

|
|

SUMMARY: AGENT AND ENVIRONMENT

4 The environment defines a set of actions an agent can take

4 The agent observes the current state of the environment, tries actions and
learns a policy

4+ A policy is a distribution over the possible actions (given the state of the

environment)
Environment
State s . Take action a,
Rewardr, . Given state s,

+ + +

*

*

AGENTS AND ENVIRONMENTS EXAMPLES

Walking Robot example
Agent: the program controlling the robot
Environment: the real world

The agent observes the environment through a set of sensors (cameras,
touch sensors,...)

[ts actions consist of sending signals to active motors
+ when it approaches the target destination

-when it goes in the wrong direction or falls down

AGENTS AND ENVIRONMENTS EXAMPLES

Computer game example (e.g. Catcher, Go, PacMan)
Agent: the program controlling the game

Environment: a simulation of the game - see e.g. PyGame learning
environment https://pygame-learning-environment.readthedocs.io/
en/latest/user/games/catcher.html

Actions are the possible joystick positions (up, down, left, right, etc.)

Rewards are game points

https://pygame-learning-environment.readthedocs.io/en/latest/user/games/catcher.html
https://pygame-learning-environment.readthedocs.io/en/latest/user/games/catcher.html
https://pygame-learning-environment.readthedocs.io/en/latest/user/games/catcher.html

HISTORY AND STATE

4+ History: the sequence of observations, actions, rewards

+ 4+ 4+ o+

Ht — Al) 017 R17 ARy Ata Ota Rt

L.e., all observable variables up to time t

The algorithm we build is a mapping from history —=> picking the next action
The agent selects actions depending on the history

The environment selects observations/rewards based on the history

But going back to an enormous history all the time is not optimal

A state captures the required information concisely - it’s basically a
summary of what we need to pick the next action

AGENT STATE

Ht — A17 Ol) R17 e Ata Ota Rt

4+ A state is a function of the history:
St = f(H)

4+ For example, this function could just pick the last observation and
only look at it, ignoring all previous observations:

AGENT STATE

Ht — A17 Ol) R17 e Ata Ota Rt

4+ A state is a function of the history:

St = f(Hy)

4+ For example, this function could just pick the last observation and
only look at it, ignoring all previous observations:

St — At—17 Ot—17 Rt—l

AGENT STATE

agent state S}

observation

Image credit: D. Silver

action

The agent state defines the
information used by RL
algorithms

[t is the agent’s internal
representation; the
information the agent uses
to pick the next action

[t can be any function of
the history

Our goal is to build a
model for picking actions

MARKOV STATE

4 An information state (Markov state) contains all useful
information from the history

A state S; is Markov if and only if

P[St_|_1 ‘ St] EE P[5t+1 | S]_, cees St]

4+ Current state is all that matters
4+ Future is independent of the rest of the history

4+ Example: self-driving car —> current position x and velocity v are
enough, (x,v) before irrelevant!

TWO MATN (COMPONENTS OF AN RL AGENT

Policy: a map from state to action: how the agent
picks its actions, its behaviour function

4+ E.g. deterministic policy Q = 7T(S)

Value function: Estimates how good each state or
action is, how well we are doing in a particular
situation —> a prediction of future reward

[et’s see how these two work in more detail...

POLICY

The agent’s behaviour
[t maps state to action

Formally: a distribution over the possible actions the
agent can take in the environment given the current state
of the environment

m(als)

4+ Goal: a policy that leads to the maximum reward

VALUE FUNCTION

4+ Value function: Prediction of expected (future) total reward
given state s

4+ How good is a state for the agent to be in

4+ Depends on policy

VW(S) = gﬂ-[Rt —+ ’}/Rt_|_1 - ’}/QR,H_Q -+ ‘St — S]

4 Discount factor
4+ [t is a measure of how far ahead in time we look,

how much weight is given to future rewards

VALUE FUNCTION

4+ Value function: Prediction of expected (future) total reward
given state s

4+ How good is a state for the agent to be in

4+ Depends on policy

VW(S) — 57'(' [Rt + /YRt-|-1 -+ ’72Rt_|_2 —+ ‘St — S]

‘, Question: What does ¥ close to 0 mean? What about y=0.97 And why ‘
‘ we usually see y<1?

—— = ——— e —

Start

THEMAIE: REWARD, ACTIONS, STATES

Image credit: D. Silver

Goal

Reach the goal as quickly as
possible

R =-1 per time-step
Actions: Up,Down,Left,Right

State: the agent’s location on
the grid

Image credit: D. Silver

The arrows represent the policy
for each state s

What the agent will choose to
do at each state (grid position)

A mapping from state to action

a=Tm(s)

POLICY NETWORKS

In a Deep RL agent, the policy is represented by a
neural network with parameters 0

We have: 7T9(CL|S) — NN(S, (9)

The neural network takes in the state as input and
outputs the appropriate distribution over actions

THE MAZE: VALUEFUNCTION

Start

-16

EIEEEIEIEN
-1 5 n

Image credit: D. Silver

Just about to reach the goal:
value function = -1 (the

highest)

Two steps away from the goal:
value function = -2

Having these values means we
can build an optimal policy

E.g. if we are at -15 we should
go up and not left or down

LEARNING WLTH POLICY GRADIENTS

We need to teach the agent to maximise the expected reward
following a policy

Need to give our agent “intelligence” by making it learn from its
experience in interacting with the environment.

Reminder: actions determined by policy 779 (CL ‘ S)

Policy gradients algorithms optimise the parameters (0) of a
policy by following the gradients toward higher rewards

We will just illustrate this method with a simple example (see the
references for the strict mathematical formalism)

*

+ + 4+ o+

LEARNING WLTH POLICY GRADIENTS

Consider a robotic vacuum cleaner whose goal (reward) is picking
up as much dust as possible in 10 minutes

Its policy could be to move forward with some probability P per
second

Or randomly rotate left or right with probability 1-P

The rotation angle would be a random angle between -r and +r
Eventually, the robot will pick up all the dust.

But how much can it pick up in 10 minutes!

How would we train such a robot?

*

+ + + 0+

LEARNING WLTH POLICY GRADIENTS

Consider a robotic vacuum cleaner whose goal (reward) is picking up as
much dust as possible in 10 minutes

[ts policy could be to move forward with some probability P per second
Or randomly rotate left or right with probability 1-P
The rotation angle would be a random angle between -r and +r

Eventually, the robot will pick up all the dust. But how much can it
pick up in 10 minutes!

How would we train such a robot?

LEARNING WLTH POLICY GRADIENTS

4 There are 2 policy parameters we can tweak: the probability P and

the angle range r (let’s just think about P for simplicity)

4+ Brute force approach: Try out many different values, pick the
combination that performs best. This is a policy search brute force
example, but when the policy space is too large it’s hopeless

+

4

LEARNING WLTH POLICY GRADIENTS

There are 2 policy parameters we can tweak: the probability p and

the angle range r (let’s just think about p for simplicity)

Brute force approach: Try out many different values, pick the
combination that performs best. This is a policy search brute force
example, but when the policy space is too large it’s hopeless

Optimisation techniques: Slightly increase P and evaluate
whether this increases the amount of dust picked up in 10 mins. If
it does, then increase some more; if not, decrease. This is an
example of learning with policy gradients.

LEARNING WLTH POLICY GRADIENTS

4 There are 2 policy parameters we can tweak: the probability p and

the angle range r (let’s just think about p for simplicity)

4+ Brute force approach: Try out many different values, pick the
combination that performs best. This is a policy search brute force
example, but when the policy space is too large it’s hopeless

4+ Optimisation techniques: Slightly increase p and evaluate whether
this increases the amount of dust picked up in 10 mins. If it does,
then increase some more; if not, decrease. This is an example of
learning with policy gradients.

4+ A bit more formally/generally: Evaluate the gradients of the
rewards with respect to the policy parameters, then tweak these
parameters following the gradient toward higher rewards (gradient

ascent)

LEARNING WLTH POLICY GRADIENTS

J(0) | Gradient Ascent

Policy : my
Objective function : J(0)
Gradient : Vo J(0)
Update : 0 < 0 + aVyJ(0)

ENOUGH THEORY - SHOW U5 SOME CODE!

4+ [strongly suggest the “hello world” of RL, the cart-pole balancing!

4+ See, for example, https://github.com/ageron/handson-ml/blob/
master/16_reinforcement_learning.ipynb

Test in progress. Action: --> (Step 83)

VA AN AV A A AN A A A A A A A A A A i M S e e e ey

https://github.com/ageron/handson-ml/blob/master/16_reinforcement_learning.ipynb
https://github.com/ageron/handson-ml/blob/master/16_reinforcement_learning.ipynb
https://github.com/ageron/handson-ml/blob/master/16_reinforcement_learning.ipynb

