
AN INTRODUCTION TO
REINFORCEMENT LEARNING

Alkistis Pourtsidou
Queen Mary, University of London

Image credit: Hayden Planetarium, 2014

REFERENCES and tutorials

This lecture is heavily based on the following resources:

✦ Introduction to Reinforcement Learning lecture course by D. Silver
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

✦ Hands on Machine Learning with Scikit Learn and TensorFlow by
A. Geron, see Chapter 16 and Github repo https://github.com/
ageron/handson-ml

✦ Reinforcement Learning by S. Sutton and A. G. Barto https://
drive.google.com/file/d/1xeUDVGWGUUv1-
ccUMAZHJLej2C7aAFWY/view

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://github.com/ageron/handson-ml
https://github.com/ageron/handson-ml

A BIT OF HISTORY

✦ Reinforcement Learning (RL) is one of the
oldest Machine Learning fields (1950s)

✦ Games revolution in 2013: Researchers
from the DeepMind startup built a system
that could play any Atari game

✦ In 2016, their system beat the world
champion of the Go game

✦ Wide range of applications today (games,
robots, cars,…)

✦ DeepMind was bought by Google for half
a billion dollars!

The many faces of RL
Lecture 1: Introduction to Reinforcement Learning

About RL

Many Faces of Reinforcement Learning

Computer Science

Economics

Mathematics

Engineering Neuroscience

Psychology

Machine
Learning

Classical/Operant
Conditioning

Optimal
Control

Reward
System

Operations
Research

Bounded
Rationality

Reinforcement
Learning

✦ Sits at the intersection of many different
fields

✦ The science of decision making is very
general and fundamental

✦ Goal: understand optimal way to make
decisions

✦ Basically same methods under different
names in engineering, neuroscience, etc.Image credit: D. Silver

RL IS A BRANCH OF MACHINE LEARNING

✦ In supervised learning, we have an input and a target value or class we
want to predict

✦ In unsupervised learning, we only have an input and look for patterns in
that input

✦ Reinforcement learning:

✦ No supervisor, just reward signal

✦ We train an agent to maximise a reward through interactions with an
environment

✦ Time matters (more about that later) - e.g. decisions unfold over time

✦ System is dynamic, non IID (basically independent and “static”) data.

Real world examples of RL use

✦ Self-driving cars

✦ Manage investment portfolio - e.g. incoming stream of
data, has to make decisions on what to invest

✦ Make a robot walk - room is the stream of data, falling
over or crashing at the wall is bad!

✦ Control a power station - e.g. maximise power while
respecting regulations/laws

✦ Learn to play computer games (better than humans)
without even knowing the rules - trial and error learning!

• Game example: Cather - catch the fruit before it reaches the floor

• We have the game environment (basically a game simulation), the
actions (joystick movements) and the RL algorithm learns to play it

• See https://edersantana.github.io/articles/keras_rl/ for code example

GBT

REAL WORLD EXAMPLES OF RL USE

https://edersantana.github.io/articles/keras_rl/

Rewards

✦ A reward Rt is a scalar feedback signal: in simpler words, just a number

✦ Indicates how well an agent is doing at time-step t

✦ E.g. if you catch the fruit, Rt = +1. If not, Rt = -1

✦ The agent’s job is to maximise cumulative (i.e. summed up) reward

✦ Reinforcement Learning is based on the reward hypothesis:

Lecture 1: Introduction to Reinforcement Learning

The RL Problem

Reward

Rewards

A reward Rt is a scalar feedback signal

Indicates how well agent is doing at step t

The agent’s job is to maximise cumulative reward

Reinforcement learning is based on the reward hypothesis

Definition (Reward Hypothesis)

All goals can be described by the maximisation of expected
cumulative reward

Do you agree with this statement?

Rewards

✦ A reward Rt is a scalar feedback signal: in simpler words, just a number

✦ Indicates how well an agent is doing at step t

✦ E.g. if you catch the fruit, Rt = +1. If not, Rt = -1

✦ The agent’s job is to maximise cumulative (i.e. summed up) reward

✦ Reinforcement Learning is based on the reward hypothesis:

Lecture 1: Introduction to Reinforcement Learning

The RL Problem

Reward

Rewards

A reward Rt is a scalar feedback signal

Indicates how well agent is doing at step t

The agent’s job is to maximise cumulative reward

Reinforcement learning is based on the reward hypothesis

Definition (Reward Hypothesis)

All goals can be described by the maximisation of expected
cumulative reward

Do you agree with this statement?
Question: What if the goal is time based, e.g. “achieve X in the shortest amount of
time”. Any ideas on how we can define reward here?

Rewards examples
✦ Self-driving car

✦ +1 for following desired trajectory

✦ -50 for crashing! (large negative reward)

✦ Robot walking

✦ +1 for forward motion

✦ -50 for falling over!

✦ Playing Atari games

✦ + for winning points

✦ - for losing points

COMMON FRAMEWORK: Sequential decision making

✦ Goal: select actions to maximise total future reward

✦ Actions may have long term consequences so need to think ahead

✦ Reward may be delayed!

✦ It may be better to sacrifice immediate reward to gain more long-
term reward

✦ Examples:

✦ An investment (may take months to mature)

✦ Fueling a helicopter (to prevent a crash in several hours)

The Agent
Lecture 1: Introduction to Reinforcement Learning

The RL Problem

Environments

Agent and Environment

observation

reward

action

At

Rt

Ot

✦ Via the RL algorithm, we are
controlling the agent (e.g. robot
with a camera)

✦ Every step: the agent sees a
snapshot - observation - of what is
happening in “its world”

✦ Gets reward signal

✦ Has to make a decision - action

Agent

Image credit: D. Silver

The Environment

Lecture 1: Introduction to Reinforcement Learning

The RL Problem

Environments

Agent and Environment

observation

reward

action

At

Rt

Ot At each step t the agent:
Executes action At

Receives observation Ot

Receives scalar reward Rt

The environment:
Receives action At

Emits observation Ot+1

Emits scalar reward Rt+1

t increments at env. step

Agent

Environment

Example: Atari game, generates the next screen (observation)
and the score (reward).

Based on slide by D. Silver

The Environment

Lecture 1: Introduction to Reinforcement Learning

The RL Problem

Environments

Agent and Environment

observation

reward

action

At

Rt

Ot At each step t the agent:
Executes action At

Receives observation Ot

Receives scalar reward Rt

The environment:
Receives action At

Emits observation Ot+1

Emits scalar reward Rt+1

t increments at env. step

Question: Does the agent (we) have control over the
environment?

SUMMARY: Agent and Environment
✦ The environment defines a set of actions an agent can take

✦ The agent observes the current state of the environment, tries actions and
learns a policy

✦ A policy is a distribution over the possible actions (given the state of the
environment)

Agents and Environments Examples

✦ Walking Robot example

✦ Agent: the program controlling the robot

✦ Environment: the real world

✦ The agent observes the environment through a set of sensors (cameras,
touch sensors,…)

✦ Its actions consist of sending signals to active motors

✦ + when it approaches the target destination

✦ - when it goes in the wrong direction or falls down

Agents and Environments Examples

✦ Computer game example (e.g. Catcher, Go, PacMan)

✦ Agent: the program controlling the game

✦ Environment: a simulation of the game - see e.g. PyGame learning
environment https://pygame-learning-environment.readthedocs.io/
en/latest/user/games/catcher.html

✦ Actions are the possible joystick positions (up, down, left, right, etc.)

✦ Rewards are game points

https://pygame-learning-environment.readthedocs.io/en/latest/user/games/catcher.html
https://pygame-learning-environment.readthedocs.io/en/latest/user/games/catcher.html
https://pygame-learning-environment.readthedocs.io/en/latest/user/games/catcher.html

History and State
✦ History: the sequence of observations, actions, rewards

Ht = A1, O1, R1, ..., At, Ot, Rt

I.e., all observable variables up to time t

✦ The algorithm we build is a mapping from history —> picking the next action

✦ The agent selects actions depending on the history

✦ The environment selects observations/rewards based on the history

✦ But going back to an enormous history all the time is not optimal

✦ A state captures the required information concisely - it’s basically a
summary of what we need to pick the next action

Agent state

Ht = A1, O1, R1, ..., At, Ot, Rt

✦ A state is a function of the history:

St = f(Ht)

✦ For example, this function could just pick the last observation and
only look at it, ignoring all previous observations:

Agent state

Ht = A1, O1, R1, ..., At, Ot, Rt

✦ A state is a function of the history:

St = f(Ht)

✦ For example, this function could just pick the last observation and
only look at it, ignoring all previous observations:

St = At�1, Ot�1, Rt�1

Agent state

✦ The agent state defines the
information used by RL
algorithms

✦ It is the agent’s internal
representation; the
information the agent uses
to pick the next action

✦ It can be any function of
the history

✦ Our goal is to build a
model for picking actions

Lecture 1: Introduction to Reinforcement Learning

The RL Problem

State

Agent State

observation

reward

action

At

Rt

Ot

St
aagent state

The agent state Sa
t is the

agent’s internal
representation

i.e. whatever information
the agent uses to pick the
next action

i.e. it is the information
used by reinforcement
learning algorithms

It can be any function of
history:

Sa
t = f (Ht)

Image credit: D. Silver

MARKOV STATE

✦ An information state (Markov state) contains all useful
information from the history

Lecture 1: Introduction to Reinforcement Learning

The RL Problem

State

Information State

An information state (a.k.a. Markov state) contains all useful
information from the history.

Definition

A state St is Markov if and only if

P[St+1 | St] = P[St+1 | S1, ..., St]

“The future is independent of the past given the present”

H1:t ! St ! Ht+1:1

Once the state is known, the history may be thrown away
i.e. The state is a su�cient statistic of the future
The environment state Se

t is Markov
The history Ht is Markov

✦ Current state is all that matters

✦ Future is independent of the rest of the history

✦ Example: self-driving car —> current position x and velocity v are
enough, (x,v) before irrelevant!

TWO Main components of an RL agent

✦ Policy: a map from state to action: how the agent
picks its actions, its behaviour function

✦ E.g. deterministic policy

✦ Value function: Estimates how good each state or
action is, how well we are doing in a particular
situation —> a prediction of future reward

✦ Let’s see how these two work in more detail…

a = ⇡(s)

POLICY

✦ The agent’s behaviour

✦ It maps state to action

✦ Formally: a distribution over the possible actions the
agent can take in the environment given the current state
of the environment

✦ Goal: a policy that leads to the maximum reward

⇡(a|s)

Value function

v⇡(s) = E⇡[Rt + �Rt+1 + �2Rt+2 + ...|St = s]

�
✦ Discount factor

✦ It is a measure of how far ahead in time we look,
how much weight is given to future rewards

✦ Value function: Prediction of expected (future) total reward
given state s

✦ How good is a state for the agent to be in

✦ Depends on policy

Value function

✦ Value function: Prediction of expected (future) total reward
given state s

✦ How good is a state for the agent to be in

✦ Depends on policy

v⇡(s) = E⇡[Rt + �Rt+1 + �2Rt+2 + ...|St = s]

Question: What does γ close to 0 mean? What about γ=0.9? And why
we usually see γ<1?

THE MAZE: Reward, actions, states

Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Maze Example

Start

Goal

Rewards: -1 per time-step

Actions: N, E, S, W

States: Agent’s location

✦ Reach the goal as quickly as
possible

✦ R = -1 per time-step

✦ Actions: Up,Down,Left,Right

✦ State: the agent’s location on
the grid

Image credit: D. Silver

THE MAZE:POLICY

✦ The arrows represent the policy
for each state s

✦ What the agent will choose to
do at each state (grid position)

✦ A mapping from state to action

Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Maze Example: Policy

Start

Goal

Arrows represent policy ⇡(s) for each state s
Image credit: D. Silver

a = ⇡(s)

POLICY NETWORKS

✦ In a Deep RL agent, the policy is represented by a
neural network with parameters θ

✦ We have: ⇡✓(a|s) = NN(s; ✓)

✦ The neural network takes in the state as input and
outputs the appropriate distribution over actions

THE MAZE:VALUE FUNCTION

✦ Just about to reach the goal:
value function = -1 (the
highest)

✦ Two steps away from the goal:
value function = -2

✦ Having these values means we
can build an optimal policy

✦ E.g. if we are at -15 we should
go up and not left or down

Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Maze Example: Value Function

-14 -13 -12 -11 -10 -9

-16 -15 -12 -8

-16 -17 -6 -7

-18 -19 -5

-24 -20 -4 -3

-23 -22 -21 -22 -2 -1

Start

Goal

Numbers represent value v⇡(s) of each state s
Image credit: D. Silver

LEARNING WITH POLICY GRADIENTS

✦ We need to teach the agent to maximise the expected reward
following a policy

✦ Need to give our agent “intelligence” by making it learn from its
experience in interacting with the environment.

✦ Reminder: actions determined by policy

✦ Policy gradients algorithms optimise the parameters (θ) of a
policy by following the gradients toward higher rewards

✦ We will just illustrate this method with a simple example (see the
references for the strict mathematical formalism)

⇡✓(a|s)

LEARNING WITH POLICY GRADIENTS

✦ Consider a robotic vacuum cleaner whose goal (reward) is picking
up as much dust as possible in 10 minutes

✦ Its policy could be to move forward with some probability P per
second

✦ Or randomly rotate left or right with probability 1-P

✦ The rotation angle would be a random angle between -r and +r

✦ Eventually, the robot will pick up all the dust.

✦ But how much can it pick up in 10 minutes?

✦ How would we train such a robot?

LEARNING WITH POLICY GRADIENTS

✦ Consider a robotic vacuum cleaner whose goal (reward) is picking up as
much dust as possible in 10 minutes

✦ Its policy could be to move forward with some probability P per second

✦ Or randomly rotate left or right with probability 1-P

✦ The rotation angle would be a random angle between -r and +r

✦ Eventually, the robot will pick up all the dust. But how much can it
pick up in 10 minutes?

✦ How would we train such a robot?

Question: Which are the policy parameters in this example?

LEARNING WITH POLICY GRADIENTS
✦ There are 2 policy parameters we can tweak: the probability P and

the angle range r (let’s just think about P for simplicity)

✦ Brute force approach: Try out many different values, pick the
combination that performs best. This is a policy search brute force
example, but when the policy space is too large it’s hopeless

LEARNING WITH POLICY GRADIENTS
✦ There are 2 policy parameters we can tweak: the probability p and

the angle range r (let’s just think about p for simplicity)

✦ Brute force approach: Try out many different values, pick the
combination that performs best. This is a policy search brute force
example, but when the policy space is too large it’s hopeless

✦ Optimisation techniques: Slightly increase P and evaluate
whether this increases the amount of dust picked up in 10 mins. If
it does, then increase some more; if not, decrease. This is an
example of learning with policy gradients.

LEARNING WITH POLICY GRADIENTS
✦ There are 2 policy parameters we can tweak: the probability p and

the angle range r (let’s just think about p for simplicity)

✦ Brute force approach: Try out many different values, pick the
combination that performs best. This is a policy search brute force
example, but when the policy space is too large it’s hopeless

✦ Optimisation techniques: Slightly increase p and evaluate whether
this increases the amount of dust picked up in 10 mins. If it does,
then increase some more; if not, decrease. This is an example of
learning with policy gradients.

✦ A bit more formally/generally: Evaluate the gradients of the
rewards with respect to the policy parameters, then tweak these
parameters following the gradient toward higher rewards (gradient
ascent)

LEARNING WITH POLICY GRADIENTS

✓

J(✓)

ENOUGH THEORY - SHOW US SOME CODE!

✦ I strongly suggest the “hello world” of RL, the cart-pole balancing!

✦ See, for example, https://github.com/ageron/handson-ml/blob/
master/16_reinforcement_learning.ipynb

https://github.com/ageron/handson-ml/blob/master/16_reinforcement_learning.ipynb
https://github.com/ageron/handson-ml/blob/master/16_reinforcement_learning.ipynb
https://github.com/ageron/handson-ml/blob/master/16_reinforcement_learning.ipynb

