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Hello * Joint PhD with Queen Mary and University of 
Southampton
  → Leptogenesis
  → T2K, Neutrino cross sections

* Post doc at Queen Mary and King’s College
  → T2K and Hyper-K experiments
        → cross sections
        → selection and detector systematic development
        → computing / GRID

My interest in machine learning (ML)

* The detector I work on (T2K near detector) is being upgraded next year

* Hyper-K will introduce two new detectors

  → Lots of development for upcoming detectors
      → good time to start looking into the potential role
          ML can take in the new detectors
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Nova:  Particle identification with 2D Convolutional Neural networks
           → final product, used in their main analysis

superFGD:  Voxel classification in the T2K near detector

WatCHMaL:  Particle identification for the Hyper-K Intermediate Water Cherenkov 
Detector

→ both examples are very much in the development stage

Other examples/potentials of ML in neutrino physics

Summary
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Nova:  

Particle Identification with 

2D Convolutional Neural networks

A. Aurisanoet al., “A Convolutional Neural Network Neutrino Event Classifier”, arXiv:1604.01444v3
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Convolutional neural networks

Graphic:  https://towardsdatascience.com
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Nova

A. Aurisanoet al., “A Convolutional Neural Network Neutrino Event Classifier”, arXiv:1604.01444v3

Fine grained liquid scintillator 
neutrino detector – 2D planes
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Nova arXiv:1604.01444 

s

A. Aurisanoet al., “A Convolutional Neural Network Neutrino Event 
Classifier”, arXiv:1604.01444v3

First neutrino oscillation experiment to fully embrace 
machine learning techniques!

2D grid readout is perfect for CNN

https://arxiv.org/abs/1604.01444
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Nova

Out performs the ‘standard’ methods previous used
→ now fully adopted into oscillation analysis!

A. Aurisanoet al., “A Convolutional Neural Network Neutrino Event Classifier”, arXiv:1604.01444v3
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Neutrino interactions and generators
→ A warning!

  

Interactions occur with nucleons bound inside a nucleus
→ → Nuclear effects!!Nuclear effects!!

We know our neutrino interaction generators are ‘dodgy’ at best
→ be very careful using them for training !!

It is not expected that they model energy deposit around the vertex/interaction point well

Is much safe to e.g. do particle ID on an electron  (rather than a nue interaction)
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SuperFGD:  
Voxel classification 

in the T2K near detector



The T2K experiment

* Long-baseline neutrino oscillation experiment in Japan

* High intensity neutrino beam, predominantly  ν
μ
 (ν

μ
)  

* Primary goal is to measure neutrino oscillation properties

  →  ν
e
 (ν

e
) appearance  and  ν

μ
 (ν

μ
) disappearance   

Main goal:  CP violation in the lepton sector!
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The T2K experiment
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Far detector:  Super-Kamiokande (SK)
→ measures oscillated neutrino spectrum
→ Cylindrical  Water Cherenkov detector
→ 40m tall, 40m radius



The T2K experiment
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Far detector:  Super-Kamiokande (SK)
→ measures oscillated neutrino spectrum
→ Cylindrical  Water Cherenkov detector
→ 40m tall, 40m radius

Near detector:  ND280
→ composite detector
    → scintillator, EM calorimeters
         time projection chambers

Constrains flux and 
neutrino interaction models

→ Undergoing an upgrade in 2021

→ New ‘SuperFGD’ 
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SuperFGD (Super Fine Grained Detector)

New sub-detector for the T2K composite near detector
To be installed in 2021 - currently being tested in a neutron beam
 
Made of scintillating cubes in a 3D grid
Optical fibres pass through cubes in all 3 planes

Motivation:
→ increases active target mass
→ improved angular acceptance
→ reconstruct low energy short tracks
        → improved hadronic information
        → better  γ → e+ e-   identification

Technical Design Report for nd280 upgrade: 
arXiv:1901.03750

SuperFGD size:  192×192×56 cubes



The superFGD
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2D readout from 
each plane

* charge 
 

* time

Construct 3D hit info from the 2D planes



SuperFGD:  Voxel classification
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Construct 3D hits (voxels’) from the 2D planes
( some basic recon involved )

●  Track voxel: 
  -  a cube with a real deposition
  -  a particle has passed through

● Crosstalk voxel: 
  -  a cube with a real deposition
  -  but no particle has passed through it 
  -  physical effect → cube-to-cube optical cross-talk

● Ghost voxel: 
  -  a cube that does NOT have any real deposition
  -  no particle has passed through
  -  reconstruction ambiguity when going from 2D to 3D

→ Plan:  Use machine learning technique to classify the voxels 
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SuperFGD:  Voxel classification

Desires
 

* Classification of individual nodes/voxels
  (rather than e.g. image recognition, segmentation)
  

* Works well on unseen data  (different numbers of nodes, different config)

Graph Neural Networks (GNNs)
   

* Suited to individual node classification
* Uses neighbourhood/adjacency of node  (suited for ghost, cross talk classification)
* graph representation lightweight (e.g. compared to full 3D grid of the detector)

GraphSAGE  (type of GCN)
  

* samples nodes neighbourhood, trains on formations
* sampling and aggregating technique
  → less computationally intense
  → generalises to unseen data, graphs of varying sizes etc.
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SuperFGD:  Voxel classification

We attach variables to each node

Fundamental / Low level variables
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SuperFGD:  Voxel classification

We attach variables to each node

Constructed variables
  

Can play around 
adding/removing 
different constructed 
variables to see 
which help the most
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SuperFGD:  Voxel classification

Graphs are a set of nodes and edges/connections

For some graphs, you will naturally have the connections/edges
e.g. citation links, chemical bonds 

In this case we need to define connections/edges
 

→ you can play around with different ways depending on the problem you are trying to solve
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SuperFGD:  Voxel classification

Each node is defined by sampling and aggregating its neighbourhood
- can play around with your method of sampling and method of aggregating
  to suit your problem

Can think of 
sampling and 
aggregating a 
bit like in CNN 
when you take 
a patch of the 
whole image, 

and transform/
conv and 

aggregate/max
-pool it
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SuperFGD:  Voxel classification
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SuperFGD:  Voxel classification

GraphSAGE performing well at classifying voxels

Still in development stage
  

- defining connections, sampling
    - some hits (0.04%) have no nearest neighbour under current system
  

- adding/removing constructed variables

Future
  

- add timing information
  

- considering systematic uncertainties
   - cross talk model
   - interaction generators (hopefully just a sanity check)
  

- extend to tasks such as vertex reconstructions
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WatCHMaL:  

Particle identification

 for the Hyper-K 

Intermediate Water Cherenkov Detector

arXiv:1911.02369
Variational Autoencoders for Generative Modelling of Water Cherenkov Detectors

https://indico.cern.ch/event/835190/contributions/3613920/attachments/1941211/3218735/
WatChMaL_NNN19.pdf

Abhishek Abhishek, Wojciech Fedorko, Patrick de Perio, Nicholas Prouse, Julian Z. Ding

https://indico.cern.ch/event/835190/contributions/3613920/attachments/1941211/3218735/WatChMaL_NNN19.pdf
https://indico.cern.ch/event/835190/contributions/3613920/attachments/1941211/3218735/WatChMaL_NNN19.pdf
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The Hyper-K experiment

Bigger and better version of T2K

* T2K beam

* T2K detectors

* New Water Cherenkov (WC) far detector* New Water Cherenkov (WC) far detector

Hyper-K (HK)Hyper-K (HK)

Super-K (SK)

Size comparison

SK:  height 40m, diameter 40m  
        → 50 kton

HK:  height 72m, dimeter 68m 
        → 258 kton 
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The Hyper-K experiment

Bigger and better version of T2K

* T2K beam

* T2K detectors

* New Water Cherenkov (WC) far detector

* New intermediate WC detector  (IWCD)* New intermediate WC detector  (IWCD)

Additional near/intermediate detector  (0.75km)

Also designed to constrain flux and neutrino interactions

Same target (water) as far detector

Ability to move up and down
→ samples flux at different angles
    → sample flux with different energy peaks/profiles
        → measure interactions across range of energies

IWCDIWCD
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Hyper-K:  Intermediate Water Cherenkov Detector

Detector walls lined with photomultiplier tubes (PMTs)
→ multi-PMT module contains 19 PMTs (3 inch)

→ detected light creates 2D image on the tank walls
    → Can we use ML for particle identification

multi-PMT

    → each multi-PMT can act as a pixel/node for neural network methods

    → each pixel has 19 channels (charge of each PMT)
         (can extend to 38 channels if you include time)
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Hyper-K:  Intermediate Water Cherenkov Detector
Can ML help with gamma(s) Vs electron ?
Events with pions?

2D patterns in grid characterize particle type
→ 2D CNN obvious place to start

Issue:  How to deal with the cylindrical shape?
     → For now, ignore top/bottom of detector
     → Simulate particles from centre of tank, perpendicular towards the walls
           → particle gun:  e, mu, gamma

mu rings – clear  e rings - ‘fuzzy’ 

90% γ rejection @ 50% e - efficiency
73% γ rejection @ 80% e - efficiency

e Vs mu
  

>99% mu/e 
discrimination

e Vs gamma

2D CNN
results:

 

( excludes  
top/bottom of tank) This is very promising!
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Hyper-K:  Intermediate Water Cherenkov Detector

Fully supervised CNN showed very promising potential

→ encouraged further exploration of ML techniques

    → Variational Autoencoders (VAE)
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Autoencoder

* Training your network to find the reduced set of latent variables
* Train such that the decoder network can reproduce the original image

  → No ‘truth’ needed, i.e. can you unlabelled data / unsupervised

  →  Uses:  compression / decompression of data!
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(denoising) Autoencoder

* Modify input, but train on the original

  → Denoising/cleaning images

  → Object removal in images
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Variational Autoencoder

Replace bottleneck 
latent variable with 
probabilistic distributions

Sample from this to form 
latent vector to feed to 
the decoder

Generative model

→ Can use unlabelled data to learn 
the latent variables

→ sample from the latent space to 
generate new images

Reconstruction 
term

Divergence / 
regularisationNote:  Can add a parameter to 

control regularization strength
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Variational Autoencoder

Generative model

Hope to train your latent variables 
to have physical meaning

e.g. moving in one direction in 
your latent space can equate to 
your image rotating, or getting 
fatter/thinner etc.

→ sample from the latent space to 
generate new images

Reconstruction 
term

Divergence / 
regularisation
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Hyper-K:  Intermediate Water Cherenkov Detector

Initial test:

- Unsupervised / unlabelled training to learn latent space

- Generate new event images

- Test if directions in latent space correspond to physical interpretations
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Hyper-K:  Intermediate Water Cherenkov Detector
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Hyper-K:  Intermediate Water Cherenkov Detector

Next test:  Introduce small sample of labelled data

Test semi-supervised and supervised learning for particle identificaiton (PID)

→ Semi-supervised learning outperforms fully supervised method
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Hyper-K:  Intermediate Water Cherenkov Detector

Potential

* Train on unlabelled data, calibration data, control samples

* Using direction in latent space to extrapolate to phase space with limited data

* Training on real calibration data
  → use VAE for part of MC generation
  →  possible to circumvent detector model/syst for certain aspects

Possible difficulties

* Image (re)construction still needs work
  - ring sharpness, replicating dark noise and scattered/reflected light

* Low energy events / neutron capture expected to be difficult
   - sparse PMT hits
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Hyper-K:  Intermediate Water Cherenkov Detector

Biggest issue so far:  Detector geometry
  

  - test so far have been based on tank wall only, not the top/bottom

Ways to 
‘flatten’ geom 
and construct 

CNN

Point cloud:  PointNET
  

Each pixel is a member of a list
pointNET uses symmetric 

functions to avoid problem of 
ordering in the list

Methods that 
focus just on the 

pixels

GraphSAGE
  

Test options for defining edges 
and sampling method
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Summary
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Other uses of ML in nu physics

Current

  T2K near detector we use BDTs for pi0 tagging
  → low level variables from multiple detectors
  → effective at improving efficiency

  Liquid argon TPC images are perfect for CNN
  - MicroBooNE
  - Dune

Potential

HK  
  →  possibilities to use ML for basic recon info for DAQ
  →  Current reconstruction is incredibly slow… can we use ML to speed things up?

Automating shifts (to some extent) – identifying problems/solutions
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Summary

Lots of different uses for ML in neutrino physics

NoVa led the way with 2D CNN work for particle ID

Other techniques being explored such as voxel classification:  GNN

Potential for reconstruction technqiues
- microboone leading the way
- nd280 upgrade and HK heading towards that diraction

New/Current generation of Liquid argon detectors well suited to CNN

Warning:  Be careful with trusting hadronic/vertex information from neutrino 
                generators!                     
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References

ArXiv: 1901.03750  T2K ND280 upgrade technical design report

MicroBooNE:  Image based reconstruction
https://indico.desy.de/indico/event/21853/session/2/contribution/46/material/slides/0.pdf

ArXiv: 1406.5298    Semi-supervised Learning withDeep Generative Models

https://indico.desy.de/indico/event/21853/session/2/contribution/46/material/slides/0.pdf
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Backup Slides



SK Systematic errors

Error (%)



Near Detectors
280m from the ν (ν) source

INGRIDINGRID
 

- On-axis, scintillator and iron
- monitors beam direction, intensity and stability

ND280ND280
Same off-axis angle as SK 

Active target mass → 2 x scintilltors (FGDs)
→ vertex reconstruction
3 Time projection chambers (TPC)
→ momentum reconstruction
→ charge identification
→ Particle identification (PID)
Electromagnetic calorimeters (Ecal)  → PID
 

  π0 detector and side muon range detector
   

Magnetised
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T2K flux and neutrino cross sections

CCQE

CCRES

CCDIS



The T2K experiment
* Long-baseline neutrino oscillation experiment

* High intensity neutrino beam, predominantly  ν
μ
 (ν

μ
)  

* Primary goal is to measure neutrino oscillation properties

  →  ν
e
 (ν

e
) appearance

  →  ν
μ
 (ν

μ
) disappearance   

* Off-axis far detector             → oscillated neutrinos  (295km)

* On/Off-axis near detectors   → unoscillated beam   (280m)

47



ND280 upgrade

ND280 will be upgraded in 
2021 during the beam upgrade

→ increases active target mass for oscillation analysis
→ improved angular acceptance
→ able to reconstruct low energy short tracks
        → improved hadronic information
        → better  γ → e+ e-   identification

Pi0 detector is being replaced by
* SuperFGD
  - higher granularity
  - 3D readout
* Horizontal TPCs (HTPCs)
* Time of Flight (ToF) planes

6 ToF planes

superFGD

HTPC

HTPC



T2K II:  SK upgrade

* SK repairs performed in 2018
  - detector drained and cleaned
  -  reinforcement of water sealing
  - improved tank piping
  - PMTs replaced

* Plan to add Gadolinium to the water
  - 0.01% next year
  - increase to 0.1% eventually

→ Better  ν / ν separation
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T2K
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PointNet – Point cloud neural network

arXiv:1612.00593

Data stored as unordered set of points
→ less cumbersome than creating 3D grid of voxels
→ no combinatorial issues
  

Requires points to be invariant to permutations
→ Done by using a symmetric function to aggregate the info from each point/neuron
 

Invarient under geomtric transformations
- point cloud roatation should not alter  result

Construct a family of symmetric functions by neural networks

https://arxiv.org/abs/1612.00593
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Variational Autoencoder

Don’t need to back 
propagate through the 
stochastic node

→ we are not trying to 
modify epsilon
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SK  e Vs mu  PID
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