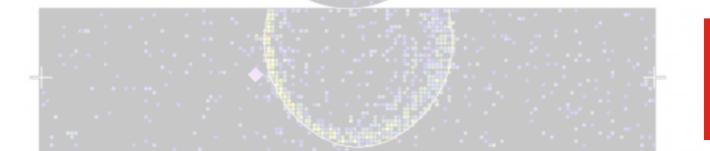
Machine learning applied to neutrino physics

GRADnet Machine learning and AI workshop 16 January 2020 Sophie King



Hello

* Joint PhD with Queen Mary and University of Southampton

- → Leptogenesis
- \rightarrow T2K, Neutrino cross sections
- * Post doc at Queen Mary and King's College
 - \rightarrow T2K and Hyper-K experiments
 - \rightarrow cross sections
 - \rightarrow selection and detector systematic development
 - \rightarrow computing / GRID

My interest in machine learning (ML)

- * The detector I work on (T2K near detector) is being upgraded next year
- * Hyper-K will introduce two new detectors
 - $\rightarrow\,$ Lots of development for upcoming detectors
 - $\rightarrow\,$ good time to start looking into the potential role ML can take in the new detectors

Contents

Nova: Particle identification with 2D Convolutional Neural networks \rightarrow final product, used in their main analysis

superFGD: Voxel classification in the T2K near detector

WatCHMaL: Particle identification for the Hyper-K Intermediate Water Cherenkov Detector

 \rightarrow both examples are very much in the development stage

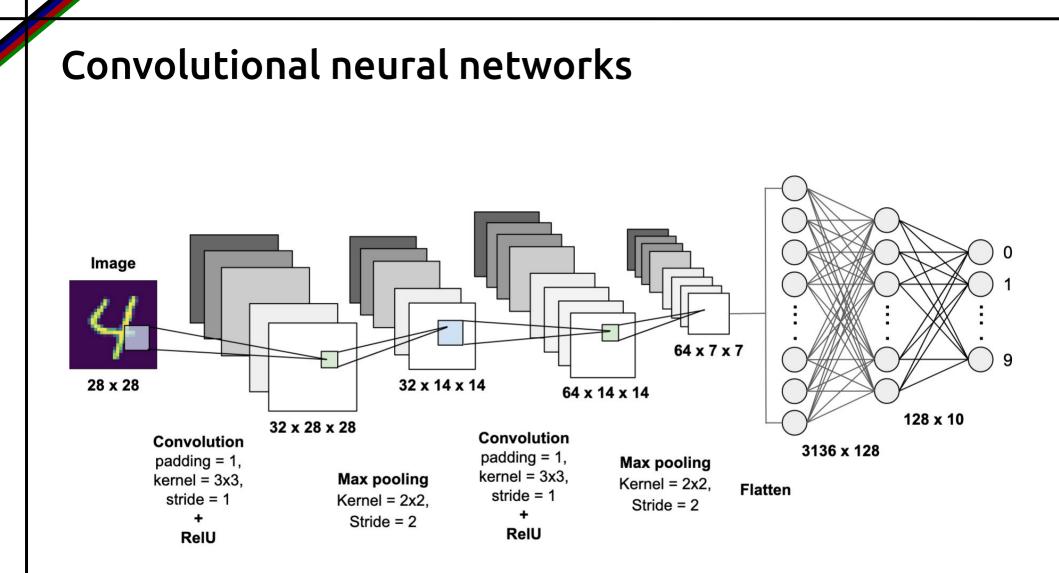
Other examples/potentials of ML in neutrino physics

Summary

Nova:

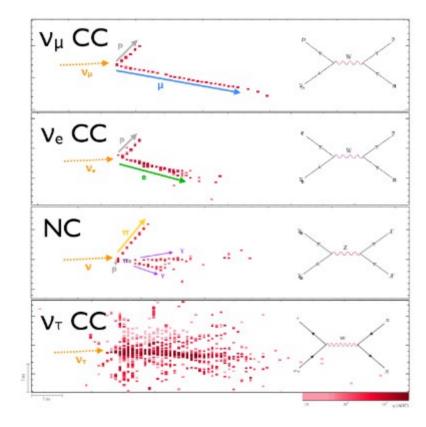
Particle Identification with

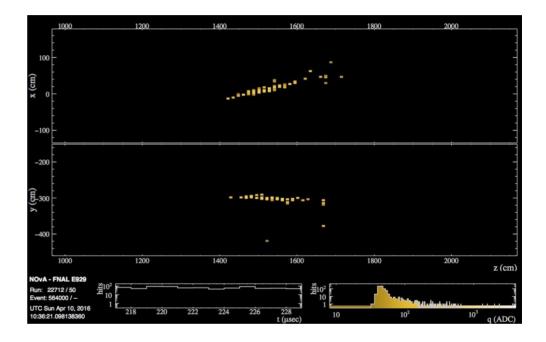
2D Convolutional Neural networks



Graphic: https://towardsdatascience.com

Fine grained liquid scintillator neutrino detector – 2D planes

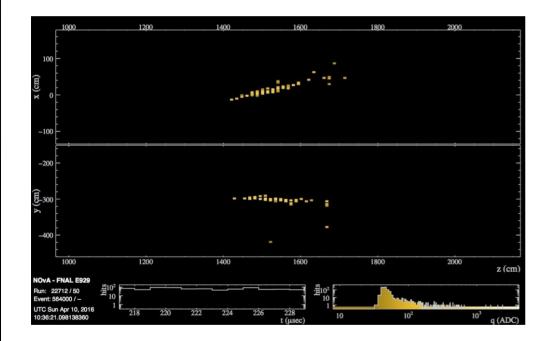


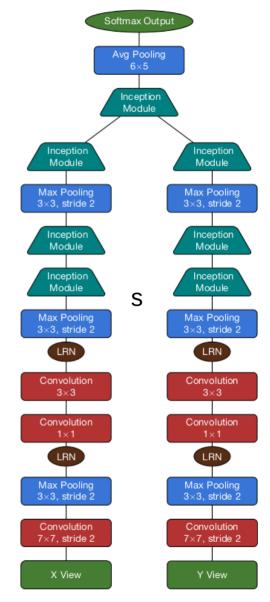


Nova

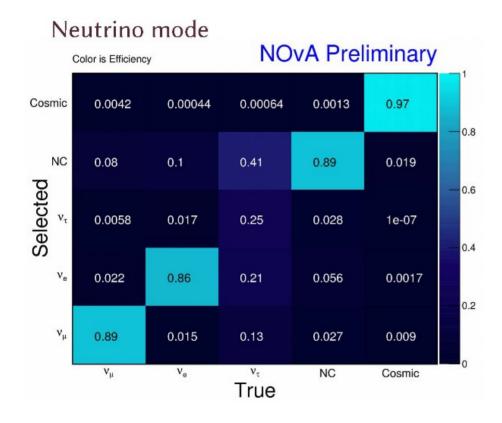
First neutrino oscillation experiment to fully embrace machine learning techniques!

2D grid readout is perfect for CNN

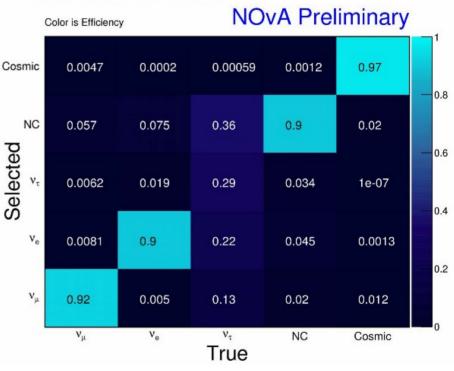




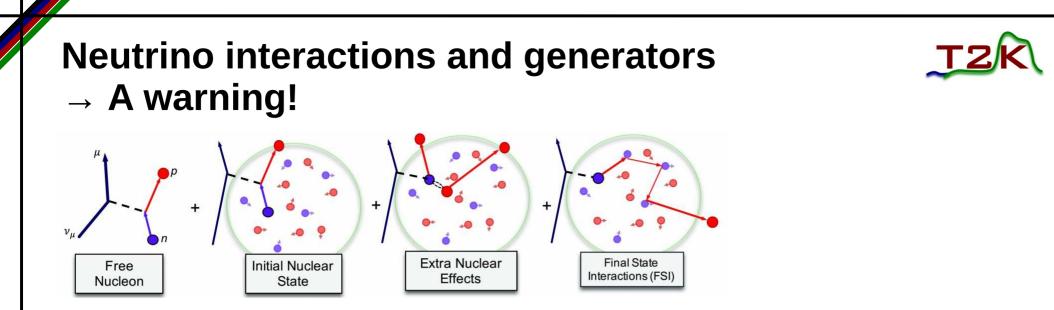
Nova



Antineutrino mode



Out performs the 'standard' methods previous used \rightarrow now fully adopted into oscillation analysis!



Interactions occur with nucleons bound inside a nucleus → **Nuclear effects!!**

We know our neutrino interaction generators are 'dodgy' at best \rightarrow **be very careful using them for training !!**

It is not expected that they model energy deposit around the vertex/interaction point well

Is much safe to e.g. do particle ID on an electron (rather than a nue interaction)

SuperFGD:

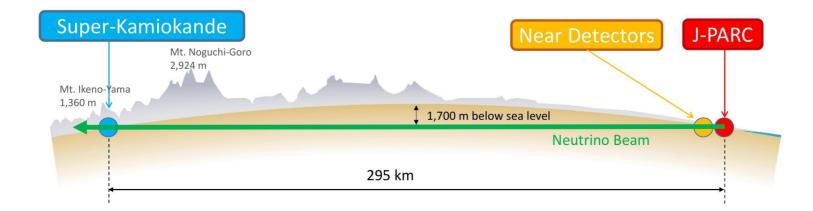
Voxel classification

in the T2K near detector

The T2K experiment

- * Long-baseline neutrino oscillation experiment in Japan
- * High intensity neutrino beam, predominantly $v_{\mu}(\overline{v})$
- * Primary goal is to measure neutrino oscillation properties
 - $\rightarrow \nu_{e} (\overline{\nu}_{e})$ appearance and $\nu_{\mu} (\overline{\nu}_{\mu})$ disappearance

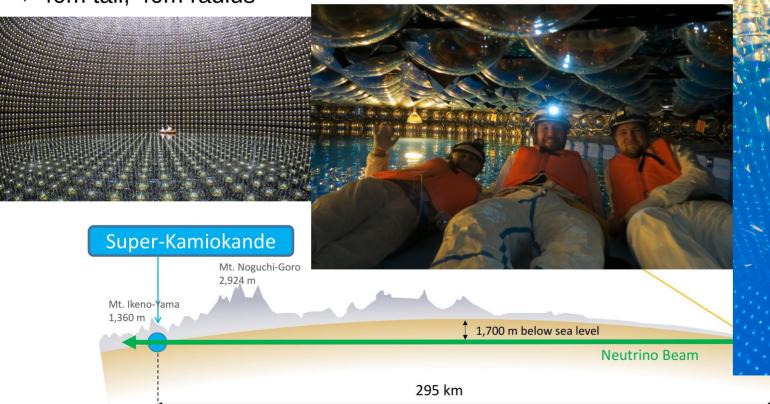
Main goal: CP violation in the lepton sector!



The T2K experiment

Far detector: Super-Kamiokande (SK)

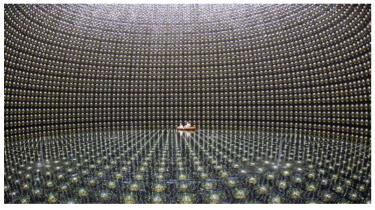
- \rightarrow measures oscillated neutrino spectrum
- \rightarrow Cylindrical Water Cherenkov detector
- \rightarrow 40m tall, 40m radius



The T2K experiment

Far detector: Super-Kamiokande (SK)

- → measures oscillated neutrino spectrum
- → Cylindrical Water Cherenkov detector
- \rightarrow 40m tall, 40m radius

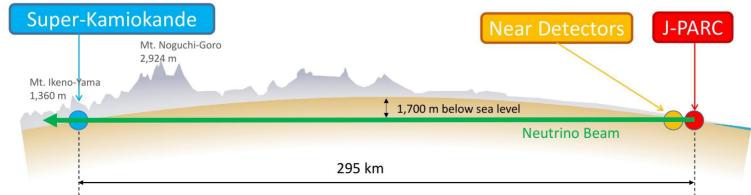


Near detector: ND280

- \rightarrow composite detector
 - → scintillator, EM calorimeters time projection chambers

Constrains flux and neutrino interaction models

- \rightarrow Undergoing an upgrade in 2021
- → New 'SuperFGD'



SuperFGD (Super Fine Grained Detector)

New sub-detector for the T2K composite near detector To be installed in 2021 - currently being tested in a neutron beam

Made of scintillating cubes in a 3D grid Optical fibres pass through cubes in all 3 planes

Motivation:

- \rightarrow increases active target mass
- → improved angular acceptance
- → reconstruct low energy short tracks
 - \rightarrow improved hadronic information
 - \rightarrow better γ \rightarrow $e^{\scriptscriptstyle +}$ $e^{\scriptscriptstyle -}$ identification

SuperFGD size: 192×192×56 cubes

Technical Design Report for nd280 upgrade: arXiv:1901.03750

The superFGD

-5.0

-7.5

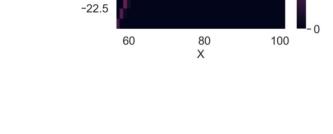
-15.0

-17.5

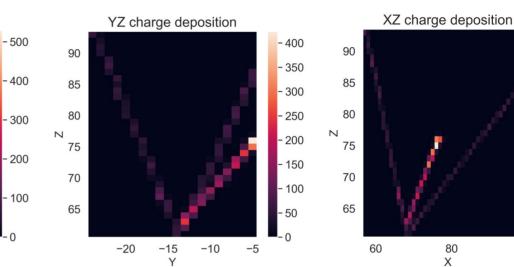
-20.0

2D readout from -10.0 each plane -12.5

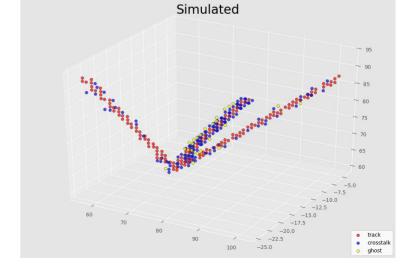
> * charge * time



XY charge deposition



Construct 3D hit info from the 2D planes



- 400

- 350

- 300

- 250

200

- 150

- 100

- 50

- 0

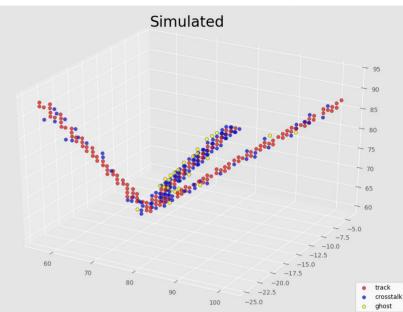
100

16

Construct 3D hits (voxels') from the 2D planes (some basic recon involved)

- Track voxel:
 - a cube with a real deposition
 - a particle has passed through
- Crosstalk voxel:
 - a cube with a real deposition
 - but no particle has passed through it
 - physical effect \rightarrow cube-to-cube optical cross-talk
- Ghost voxel:
 - a cube that does NOT have any real deposition
 - no particle has passed through
 - reconstruction ambiguity when going from 2D to 3D

\rightarrow Plan: Use machine learning technique to classify the voxels



Desires

- * Classification of individual nodes/voxels (rather than e.g. image recognition, segmentation)
- * Works well on unseen data (different numbers of nodes, different config)

Graph Neural Networks (GNNs)

- * Suited to individual node classification
- * Uses neighbourhood/adjacency of node (suited for ghost, cross talk classification)
- * graph representation lightweight (e.g. compared to full 3D grid of the detector)

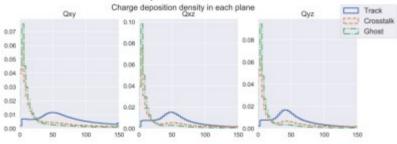
GraphSAGE (type of GCN)

- * samples nodes neighbourhood, trains on formations
- * sampling and aggregating technique
 - $\rightarrow\,$ less computationally intense
 - $\rightarrow\,$ generalises to unseen data, graphs of varying sizes etc.

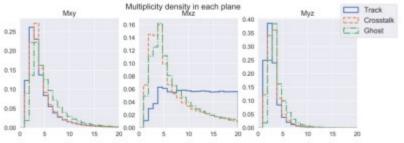
We attach variables to each node

Fundamental / Low level variables

- Voxel position (X, Y, Z).
- # of photoelectrons in each plane.

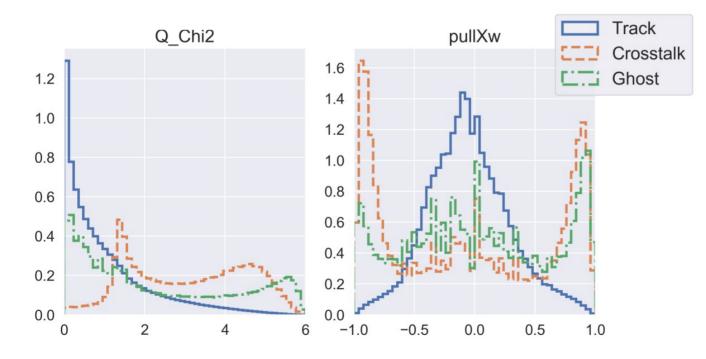


Multiplicity in each plane.



We attach variables to each node

Constructed variables



Can play around adding/removing different constructed variables to see which help the most

Graphs are a set of nodes and edges/connections

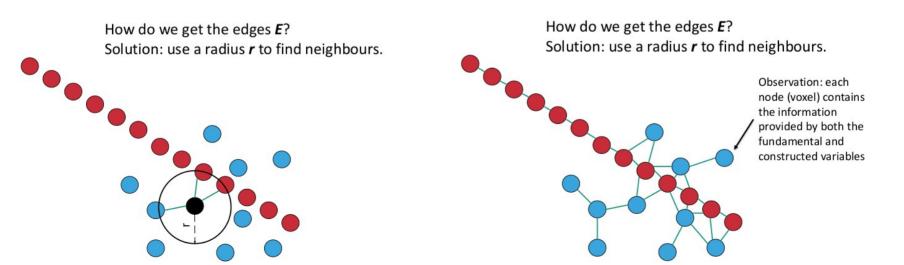
For some graphs, you will naturally have the connections/edges e.g. citation links, chemical bonds

In this case we need to define connections/edges

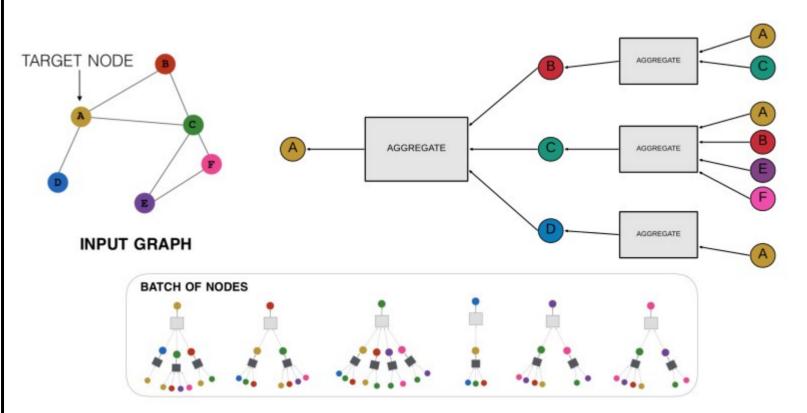
 \rightarrow you can play around with different ways depending on the problem you are trying to solve

2D example

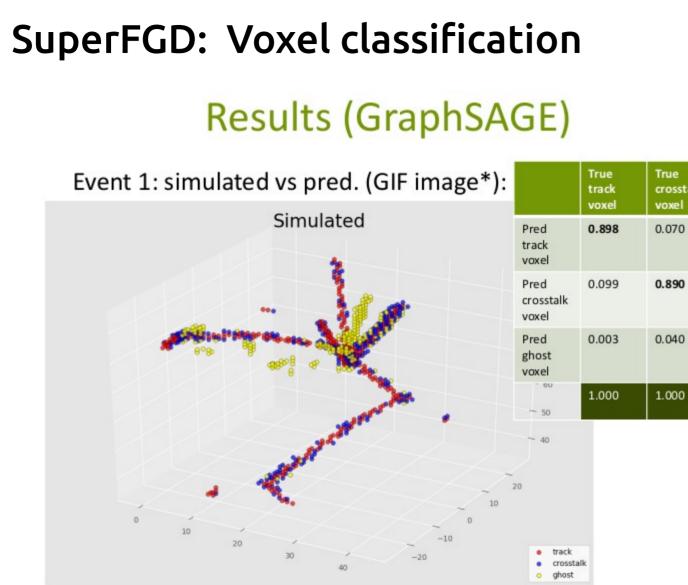
2D example



Each node is defined by sampling and aggregating its neighbourhoodcan play around with your method of sampling and method of aggregating to suit your problem



Can think of sampling and aggregating a bit like in CNN when you take a patch of the whole image, and transform/ conv and aggregate/max -pool it



	True track voxel	True crosstalk voxel	True ghost voxel
Pred track voxel	0.898	0.070	0.029
Pred crosstalk voxel	0.099	0.890	0.041
Pred ghost voxel	0.003	0.040	0.930
~ 50	1.000	1.000	1.000
- 40			

GraphSAGE performing well at classifying voxels

Still in development stage

- defining connections, sampling
 - some hits (0.04%) have no nearest neighbour under current system
- adding/removing constructed variables

Future

- add timing information
- considering systematic uncertainties
 - cross talk model
 - interaction generators (hopefully just a sanity check)
- extend to tasks such as vertex reconstructions

WatCHMaL:

Particle identification

for the Hyper-K

Intermediate Water Cherenkov Detector

arXiv:1911.02369 Variational Autoencoders for Generative Modelling of Water Cherenkov Detectors

https://indico.cern.ch/event/835190/contributions/3613920/attachments/1941211/3218735/ WatChMaL_NNN19.pdf

Abhishek Abhishek, Wojciech Fedorko, Patrick de Perio, Nicholas Prouse, Julian Z. Ding

The Hyper-K experiment

Bigger and better version of T2K

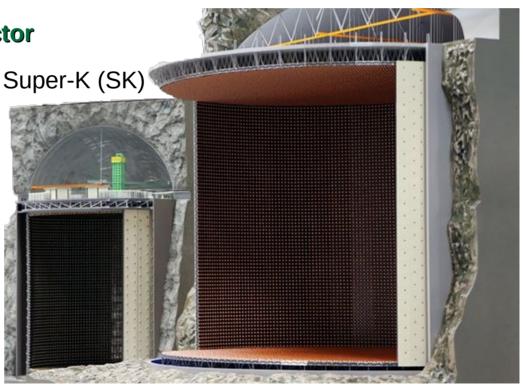
- * T2K beam
- * T2K detectors

* New Water Cherenkov (WC) far detector

Size comparison

- SK: height 40m, diameter 40m \rightarrow 50 kton
- HK: height 72m, dimeter 68m \rightarrow 258 kton

Hyper-K (HK)



The Hyper-K experiment

Bigger and better version of T2K

- * T2K beam
- * T2K detectors
- * New Water Cherenkov (WC) far detector
- * New intermediate WC detector (IWCD)

Additional near/intermediate detector (0.75km)

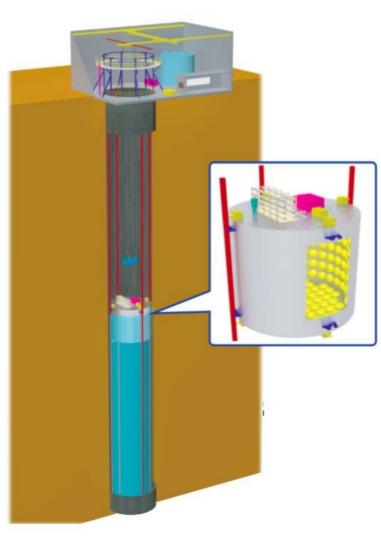
Also designed to constrain flux and neutrino interactions

Same target (water) as far detector

Ability to move up and down

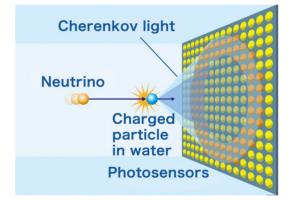
- \rightarrow samples flux at different angles
 - \rightarrow sample flux with different energy peaks/profiles
 - \rightarrow measure interactions across range of energies

IWCD



Detector walls lined with photomultiplier tubes (PMTs) \rightarrow multi-PMT module contains 19 PMTs (3 inch)

- $\rightarrow\,$ detected light creates 2D image on the tank walls
 - $\rightarrow\,$ Can we use ML for particle identification



multi-PMT

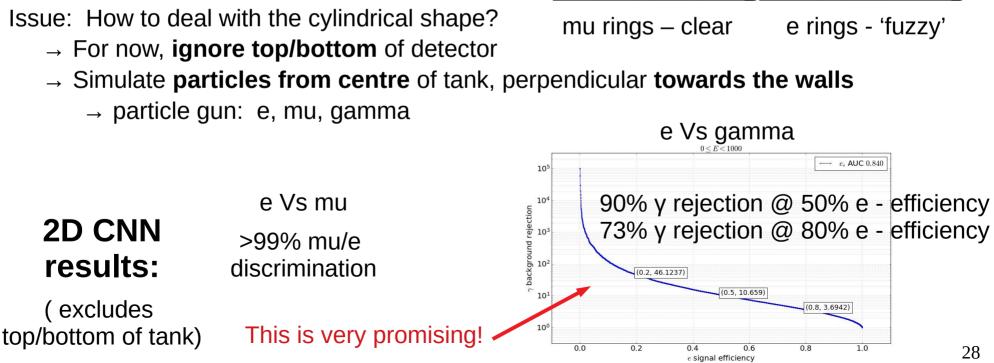
- \rightarrow each multi-PMT can act as a pixel/node for neural network methods
- → each pixel has 19 channels (charge of each PMT) (can extend to 38 channels if you include time)

Can ML help with gamma(s) Vs electron ? Events with pions?

2D patterns in grid characterize particle type \rightarrow 2D CNN obvious place to start

Issue: How to deal with the cylindrical shape?

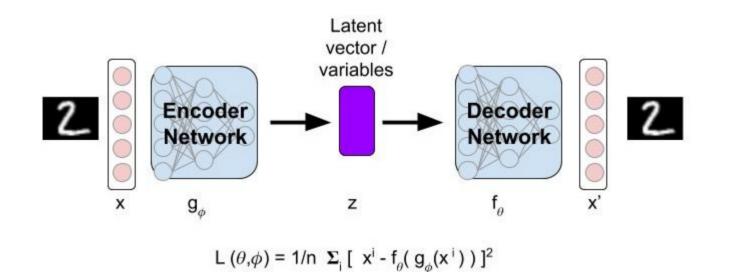
- → For now, **ignore top/bottom** of detector



Fully supervised CNN showed very promising potential

- \rightarrow encouraged further exploration of ML techniques
 - \rightarrow Variational Autoencoders (VAE)

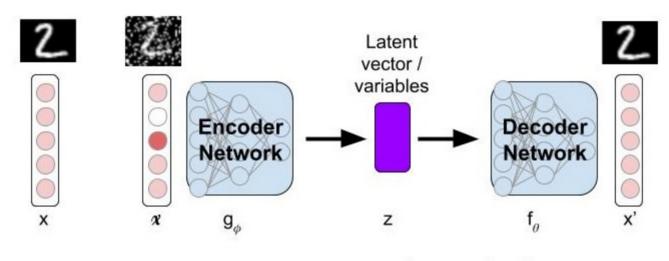
Autoencoder



* Training your network to find the reduced set of latent variables* Train such that the decoder network can reproduce the original image

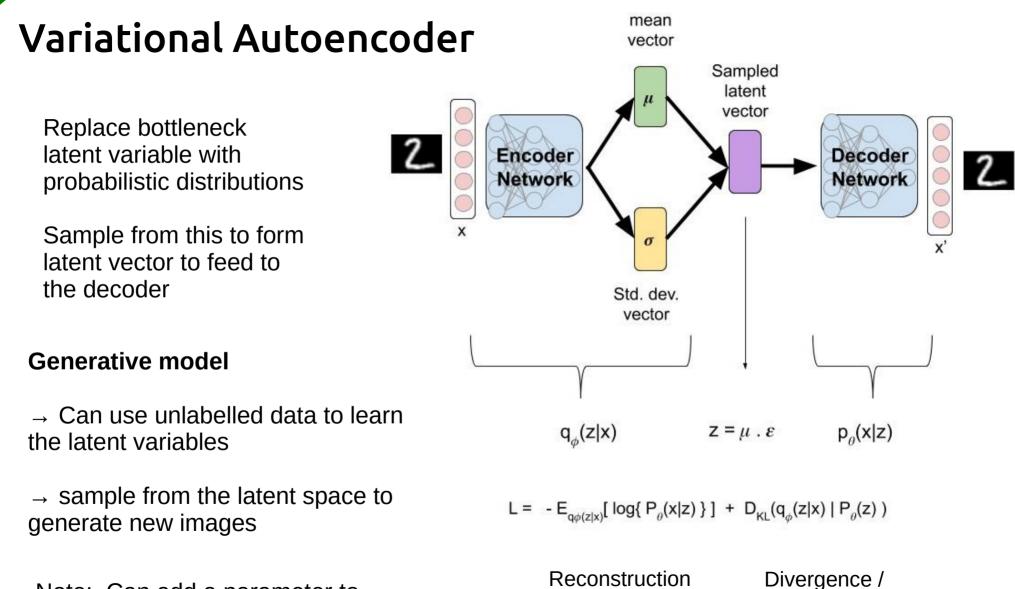
- \rightarrow No 'truth' needed, i.e. can you unlabelled data / unsupervised
- \rightarrow Uses: compression / decompression of data!

(denoising) Autoencoder



 $L(\theta,\phi) = 1/n \Sigma_{i} [x^{i} - f_{\theta}(g_{\phi}(x^{i}))]^{2}$

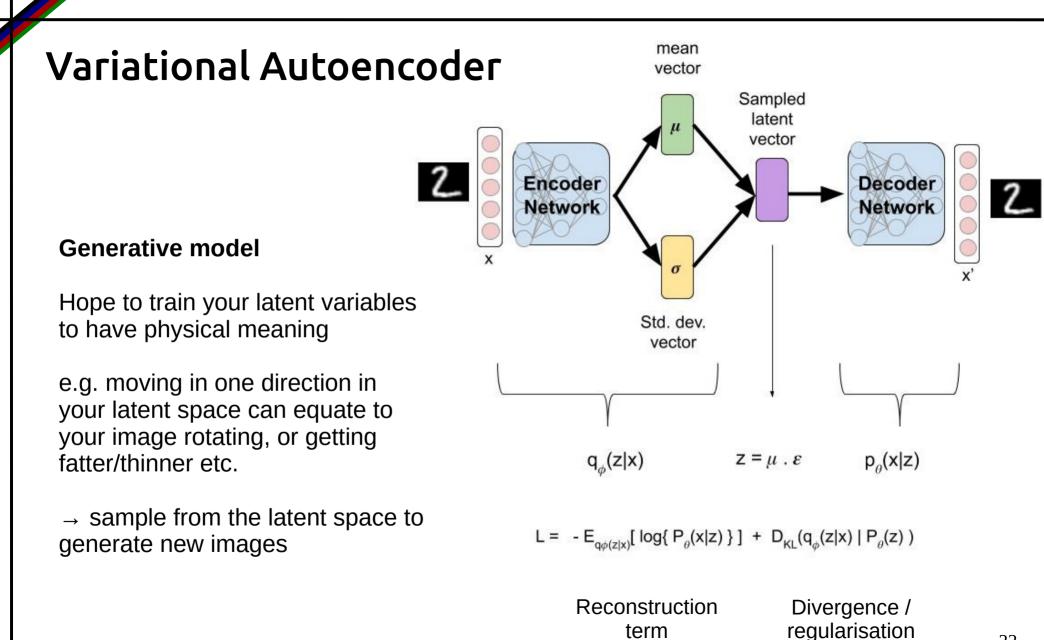
- * Modify input, but train on the original
 - \rightarrow Denoising/cleaning images
 - \rightarrow Object removal in images

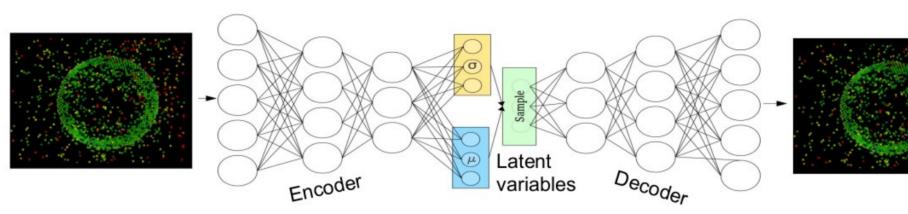


term

Note: Can add a parameter to control regularization strength

regularisation





Initial test:

- Unsupervised / unlabelled training to learn latent space
- Generate new event images
- Test if directions in latent space correspond to physical interpretations

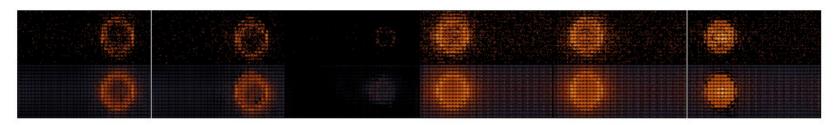


Figure 2: Cherenkov ring images comparing actual simulated events (top) with their corresponding VAE reconstructed events (bottom).

Figure 3: Cherenkov ring images for events randomly sampled from the latent prior $p(z) = \mathcal{N}(0, I)$.

Figure 4: Linear interpolation in the latent space for μ^- events along the angle axis from $\phi = 0$ to $-\pi$ (top) and energy axis from 200 MeV to 800 MeV (bottom).

Next test: Introduce small sample of labelled data

Test semi-supervised and supervised learning for particle identificaiton (PID)

Number of training examples	γ background rejection (%) at 50% e^- signal efficiency		γ background rejection (%) at 80% e^- signal efficiency	
	SS-CNN	CNN	SS-CNN	CNN
11,250	77.6	76.4	50.7	46.3
22,500	80.4	78.1	54.3	48.5
45,000	80.7	79.4	55.9	49.9

→ Semi-supervised learning outperforms fully supervised method

Hyper-K: Intermediate Water Cherenkov Detector

Potential

- * Train on unlabelled data, calibration data, control samples
- * Using direction in latent space to extrapolate to phase space with limited data
- * Training on real calibration data
 - \rightarrow use VAE for part of MC generation
 - \rightarrow possible to circumvent detector model/syst for certain aspects

Possible difficulties

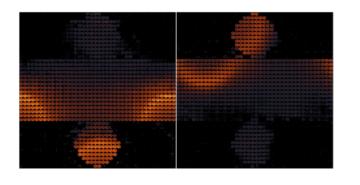
- * Image (re)construction still needs work
 - ring sharpness, replicating dark noise and scattered/reflected light
- * Low energy events / neutron capture expected to be difficult
 - sparse PMT hits

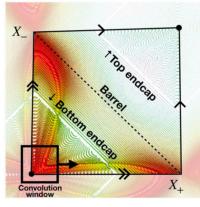
Hyper-K: Intermediate Water Cherenkov Detector

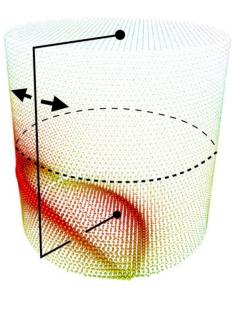
Biggest issue so far: Detector geometry

- test so far have been based on tank wall only, not the top/bottom

Ways to 'flatten' geom and construct CNN







Methods that focus just on the pixels Point cloud: PointNET Each pixel is a member of a list pointNET uses symmetric functions to avoid problem of ordering in the list

GraphSAGE

Test options for defining edges and sampling method

Summary

Other uses of ML in nu physics

Current

T2K near detector we use BDTs for pi0 tagging

- \rightarrow low level variables from multiple detectors
- \rightarrow effective at improving efficiency

Liquid argon TPC images are perfect for CNN

- MicroBooNE
- Dune

Potential

ΗK

- \rightarrow possibilities to use ML for basic recon info for DAQ
- \rightarrow Current reconstruction is incredibly slow... can we use ML to speed things up?

Automating shifts (to some extent) – identifying problems/solutions

Summary

Lots of different uses for ML in neutrino physics

NoVa led the way with 2D CNN work for particle ID

Other techniques being explored such as voxel classification: GNN

Potential for reconstruction technqiues

- microboone leading the way

- nd280 upgrade and HK heading towards that diraction

New/Current generation of Liquid argon detectors well suited to CNN

Warning: Be careful with trusting hadronic/vertex information from neutrino generators!

References

ArXiv: 1901.03750 T2K ND280 upgrade technical design report

MicroBooNE: Image based reconstruction https://indico.desy.de/indico/event/21853/session/2/contribution/46/material/slides/0.pdf

ArXiv: 1406.5298 Semi-supervised Learning withDeep Generative Models

Backup Slides

SK Systematic errors

	1-Ring μ		1-Ring e			
Error source	FHC	RHC	FHC	RHC	FHC 1 d.e.	FHC/RHC
SK Detector	2.40	2.01	2.83	3.80	13.15	1.47
SK FSI+SI+PN	2.21	1.98	3.00	2.31	11.43	1.57
Flux + Xsec constrained	3.27	2.94	3.24	3.10	4.09	2.67
E _b	2.38	1.72	7.13	3£6r6or	(%) 95	3.62
$\sigma(u_e)/\sigma(ar{ u}_e)$	0.00	0.00	2.63	1.46	2.61	3.03
$NC1\gamma$	0.00	0.00	1.09	2.60	0.33	1.50
NC Other	0.25	0.25	0.15	0.33	0.99	0.18
Osc	0.03	0.03	2.69	2.49	2.63	0.77
All Systematics	5.12	4.45	8.81	7.13	18.38	5.96
All with osc	5.12	4.45	9.19	7.57	18.51	6.03

Table 5: Percentage error on event rate by error source and sample. Final column is the percentage error on the r of FHC/RHC events in the one-ring e sample.

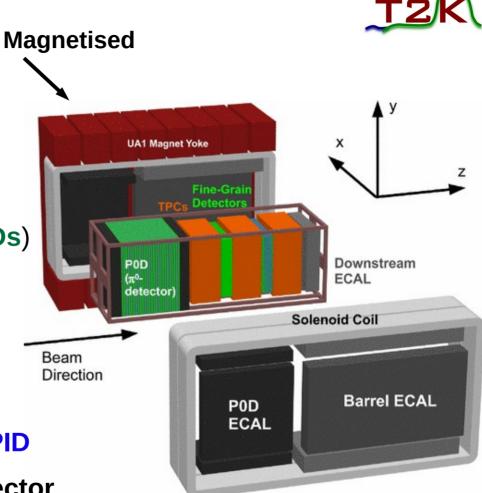
Near Detectors

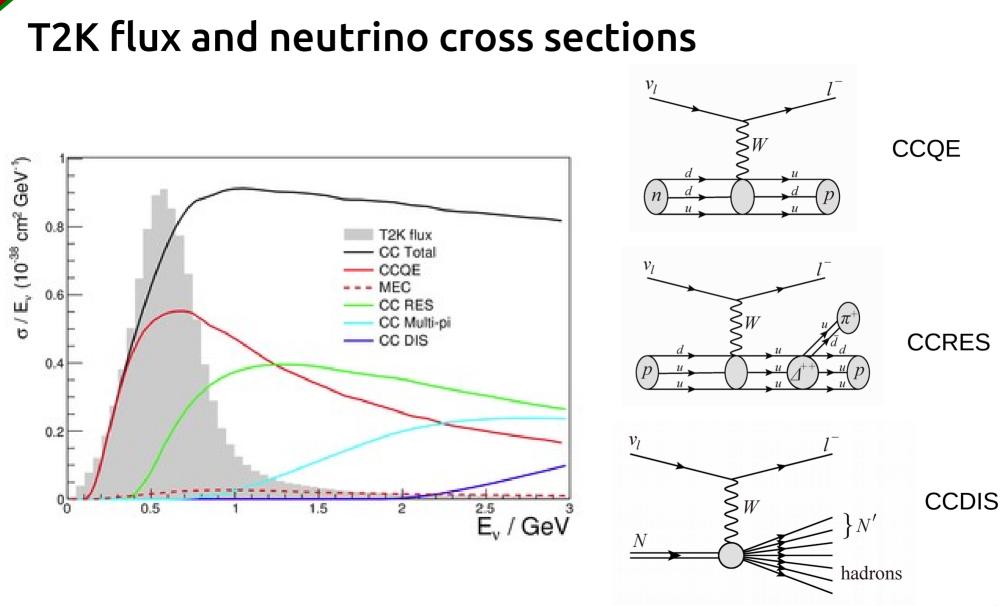
280m from the v (\overline{v}) source

ND280

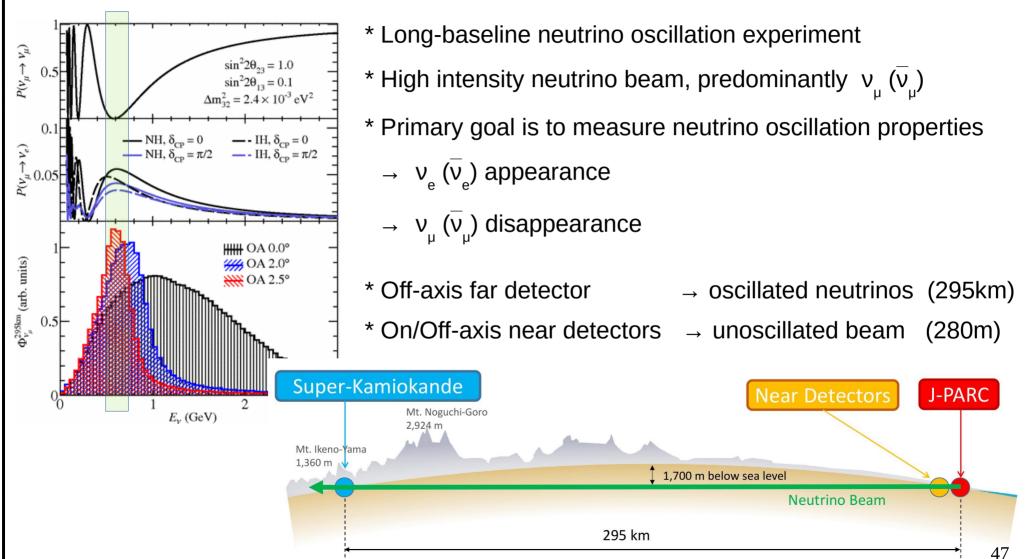
Same off-axis angle as SK

- Active target mass \rightarrow 2 x scintilltors (FGDs)
 - → vertex reconstruction
- 3 Time projection chambers (TPC)
 - → **momentum** reconstruction
 - \rightarrow **charge** identification
 - → Particle identification (PID)
- Electromagnetic calorimeters (Ecal) \rightarrow PID
- π^0 detector and side muon range detector

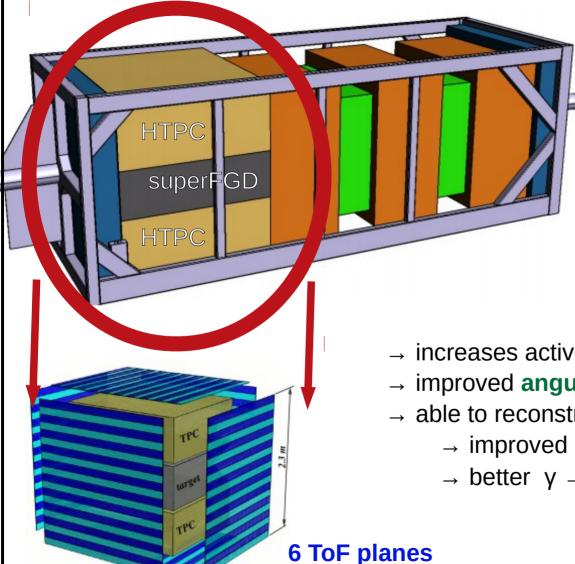




The T2K experiment



ND280 upgrade



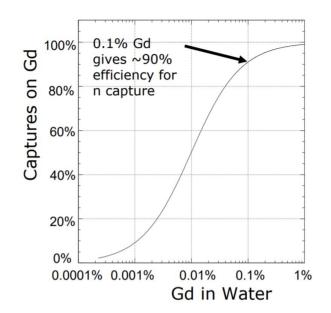
ND280 will be upgraded in **2021** during the beam upgrade

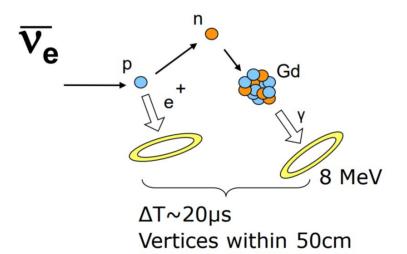
Pi0 detector is being replaced by * SuperFGD

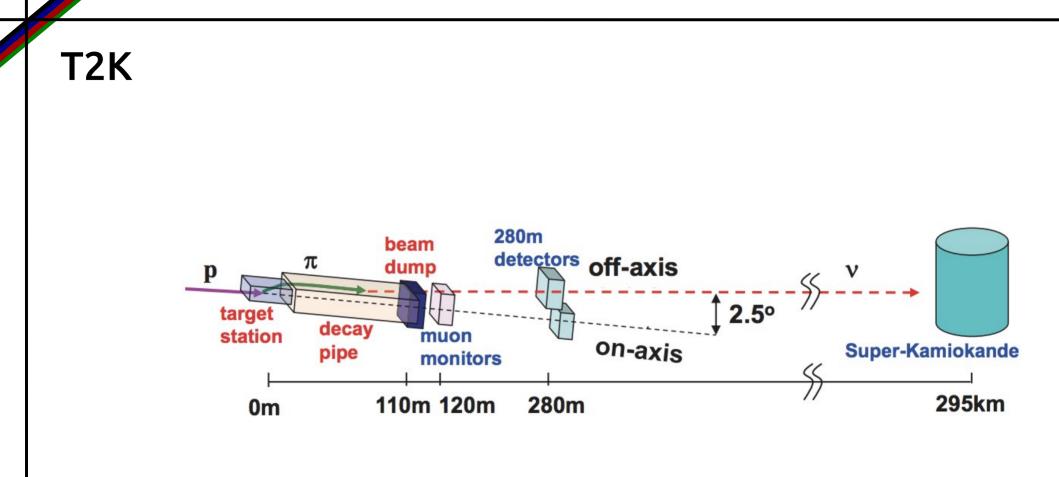
- higher granularity
- 3D readout
- * Horizontal TPCs (HTPCs)
- * Time of Flight (ToF) planes
- \rightarrow increases active target **mass** for oscillation analysis
- → improved angular acceptance
- → able to reconstruct low energy short tracks
 - \rightarrow improved hadronic information
 - \rightarrow better y \rightarrow e⁺ e⁻ identification

T2K II: SK upgrade

- * SK repairs performed in 2018
 - detector drained and cleaned
 - reinforcement of water sealing
 - improved tank piping
 - PMTs replaced
- \ast Plan to add ${\bf Gadolinium}$ to the water
 - 0.01% next year
 - increase to 0.1% eventually
- \rightarrow Better v / \overline{v} separation







PointNet – Point cloud neural network

arXiv:1612.00593

Data stored as unordered set of points

- \rightarrow less cumbersome than creating 3D grid of voxels
- \rightarrow no combinatorial issues

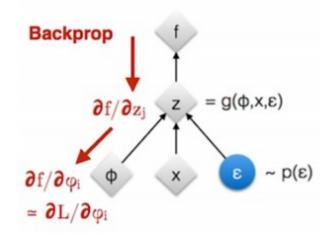
Requires points to be invariant to permutations

 \rightarrow Done by using a symmetric function to aggregate the info from each point/neuron Invarient under geomtric transformations

- point cloud roatation should not alter result

Construct a family of symmetric functions by neural networks

Variational Autoencoder



Don't need to back propagate through the stochastic node

 \rightarrow we are not trying to modify epsilon

SK e Vs mu PID

