
IRIS Scientific OpenStack
Digital Asset Update

John Garbutt
December 2019

Scientific OpenStack

Scientists

Platform Ops

Infrastructure Ops

Platforms

Science

Scientific OpenStack
FY19 Digital Assets

● Building on FY18 assets

● Driven by Science Communities needs

● Provides Reference Platforms

● Reference OpenStack Architecture and

Configuration tuned for Scientific Computing

● Tooling to help Operate OpenStack

Development Approach

3
Co-development

based on Feedback

1
Minimum Viable

Solution

2
User Handover and

Feedback

FY19 Deliverables

1. OpenStack
○ WP1.1 CI/CD of OpenStack Train
○ WP1.2 Improved Monitoring

2. Efficient Resource Usage
○ WP2.1 Blazar, WP2.2 Backfill best practices
○ WP2.6 (stretch) Low Latency Ethernet

3. Platforms
○ WP3.1 Octavia
○ WP3.2 Slurm as a Service for Euclid
○ WP3.3 Kubernetes, (Stretch) Spark on Kubernetes

4. Federation
○ WP4.1 APEL
○ WP4.2 IRIS IAM

OpenStack
Digital Assets

OpenStack Progress Highlights

● Being used for IRIS Science, since April 2019
● Operations by Cambridge HPCS
● User onboarding and automation scripts
● DiRAC Slurm on OpenStack Ironic

● Updates: Octavia and Magnum, Stein soon, Train planned
● Federation: APEL, IRIS IAM (in pre-prod)
● CI/CD: Tempest, (OnBoarding, Containers, Config, Kayobe)
● Monitoring and Alert improvements (in development)

Additional site volunteers?

Baremetal via Ironic

● Maximum Performance

● Latency sensitive, e.g. MPI

○ RDMA Ethernet, RoCEv2 or iWARP

○ Dataset larger than single node’s memory

○ SR-IOV is a possible alternative

● Trust issues around direct access to hardware

○ Cleaning is already supported

○ Can be avoided by providing a “Managed” service

● Optionally used by Kayobe for Server Lifecycle Management

Platform Types
OpenStack Server

● Terraform creates Infrastructure

○ Use base OS image

○ No difference for Baremetal vs VMs

● Ansible modifies base OS to deploy

Platform stack and Monitoring stack

Kubernetes

● Terraform creates K8s cluster

○ Manila CSI, cluster-autoscaler,

Octavia Ingress, Prometheus, Grafana

● Ansible deploys apps via Helm,

Kustomize

Platforms:
OpenHPC Slurm

OpenHPC Slurm for Euclid

● Powering real Science
● Operations in the hands of Euclid team
● Software VPN: RAL and Cambridge via Edinburgh
● Multi-Site Hyperconverged CephFS

Future Ideas:

● Access to Lustre File System
● Hardware offload of VPN

Generic OpenHPC Slurm

● Open OnDenand via IRIS IAM
● Hybrid: Terraform instead of OpenStack Heat
● Monitoring with Prometheus

● Lustre inside OpenStack, designed
● Exploring AutoScale (image based deploy) and Updates
● Exploring DiRAC via Ironic convergence

Example: Terraform for OpenHPC
provider "openstack" {

 cloud = "cumulus"

}

resource "openstack_compute_instance_v2" "login" {

 name = "ohpc-login"

 image_name = "CentOS7-1907"

 flavor_name = "general.v1.tiny"

 key_pair = "johng"

 security_groups = ["default"]

 network {

 name = "cumulus-internal"

 }

}

resource "openstack_compute_instance_v2" "comp" {

 name = "ohpc-compute-${count.index}"

 image_name = "CentOS7-1907"

 flavor_name = "general.v1.medium"

 key_pair = "johng"

 security_groups = ["default"]

 count = 5

 network {

 name = "cumulus-internal"

 }

}

Demo:
IRIS IAM and Slurm

Platforms:
Kubernetes

OpenStack Magnum

● Magnum and Kubernetes updates
● OpenStack cloud provider

○ Storage: Cinder, Manila
○ Load Balancer: Octavia
○ Ingress to reduce Public IP usage

● Cluster Autoscaler

● Hybrid: Terraform to create Kubernetes cluster
● Working on Spark for GAIA
● Jupyter Hub and Dask on Kubernetes via Pangeo
● Planned: in-place upgrade, more updates and testing

Example: Terraform for K8s
provider "openstack" {

 cloud = "cumulus"

}

resource "openstack_containerinfra_clustertemplate_v1" "kubernetes_template" {

 name = "kubernetes-1.15.3"

}

resource "openstack_containerinfra_cluster_v1" "cluster" {

 name = "my_test_k8s"

 cluster_template_id = "${openstack_containerinfra_clustertemplate_v1.kubernetes_template.id}"

 master_count = 2

 node_count = 2

 keypair = "johng"

 labels = {

 min_node_count = 1

 max_node_count = 4

 }

}

Demo:
Kubernetes AutoScale

Better OpenStack
Resource Management

OpenStack Resource Management

● Quota = max concurrent usage

● Allocation = fair share of usage, averaged over one year

● Quota can divide resources between projects
● Resources per project, not per group of projects
● OpenStack generally hides current capacity
● First to take resources wins

Resource Management

● Aims
○ Maximise Science done on given resources
○ While maintaining a fare share inline with allocation

● Use Cases
○ GridPP Backfill
○ Autoscaling Platforms (Kubernetes, Slurm)
○ Schedule re-processing runs
○ Known time slot resource needs

Problems with Backfilling?

● Making space for Backfill
○ Isolated platforms help loose coupling, but can be costly
○ Stop VMs you don’t need
○ Kubernetes cluster autoscaler, Slurm elastic compute

● Taking back resources from Backfill
○ Retry until you get lucky?
○ External system manage project quotas and wait for drain?
○ External system delete “preemptible” instances?
○ … or something else? Reservations?

https://en.wikipedia.org/wiki/Trifle#/media/File:Trifle_4layer.jpg

https://en.wikipedia.org/wiki/Trifle#/media/File:Trifle_4layer.jpg

OpenStack Blazar Reservation

● OpenStack Blazar manages a subset of nodes
○ Adds a time axis to OpenStack placement

● Users can request a reservation of specific size and time
● Negotiate when to do your “big run” with other projects

● Added support for Preemptibles in Blazar
● Independent to CERN efforts around preemptibles in Nova
● Future ideas:

○ Limit max CPU hours of reservations, track usages vs limit
○ Auto-shrink unused reservations, or require explicit claim
○ Specify constraints not specific size and time
○ Webhooks to automate usage on start

Demo:
Blazar Preemptibles

Blazar Preemptibles Demo

● Run on pre-prod at Cambridge
● One hypervisor is a Blazar host resource

○ Normally only used by Blazar reservations

● Successfully create 4 preemptibles
● Successfully create a Blazar reservation
● Triggers delete of preemptible instances
● Unsuccessfully try to create more preemptible instances
● Successfully create instance to use Blazar reservation

Host reservation
● Create a reservation
● Set it to start immediately

Reservation Request Accepted

Reservation is STARTING

Preemptible Instances Terimnated

No More Preemptible Instances

Reservation Owner Creates Instances

OpenStack Blazar Future Ideas

● Enhancements to Preemptable support
● Option to use Reservations by default, with Magnum
● Limit max CPU hours of reservations

○ Track actual usages vs reservations vs limit

● Webhooks to automate usage on start and clean up on finish
● Specify constraints, rather than specific time and size

○ Shuffle future reservations based on new requests

● Auto-shrink unused reservations
○ Consider explicit claim, followed by return, followed by later reclaim

● API to query current preemptible capacity
○ Communicate preemptible capacity via quota

Summary:
Scientific OpenStack

FY19 Digital Asset

FY19 Deliverables

1. OpenStack
○ WP1.1 CI/CD of OpenStack Train, WP1.2 Improved Monitoring

2. Efficient Resource Usage
○ WP2.1 Blazar, WP2.2 Backfill best practices
○ WP2.6 (stretch) Low Latency Ethernet

3. Platforms
○ WP3.1 Octavia
○ WP3.2 Slurm as a Service for Euclid
○ WP3.3 Kubernetes, (Stretch) Spark on Kubernetes

4. Federation
○ WP4.1 APEL
○ WP4.2 IRIS IAM

Scientific OpenStack

Scientists

Platform Ops

Infrastructure Ops

Platforms

Science

Scientific OpenStack

Scientists

Platform Ops

Infrastructure OpsCompute, Networking, Storage

Container
Orchestration

Platforms

Science

@stackhpc
@johnthetubaguy

