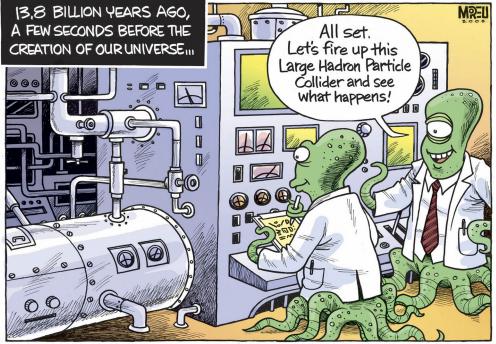


Searching for Dark Matter in association with Higgs bosons

Jeanette Lorenz (LMU München)


London, 05.12.2019

Outline

- LHC and ATLAS/CMS
- Standard Model and its shortcomings
- Searches for EWK SUSY with a Higgs boson
- Searches for Higgsinos
- Searches for Dark Matter in association with a Higgs boson

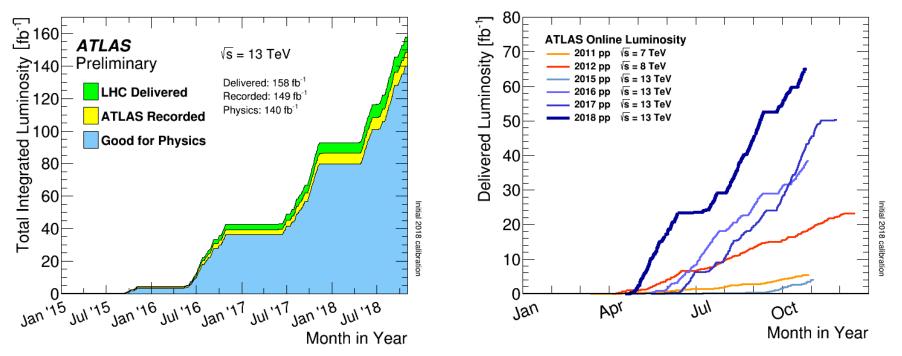
[CERN theory common room]

• Where to go next

CMS

The state of the second

S. arts

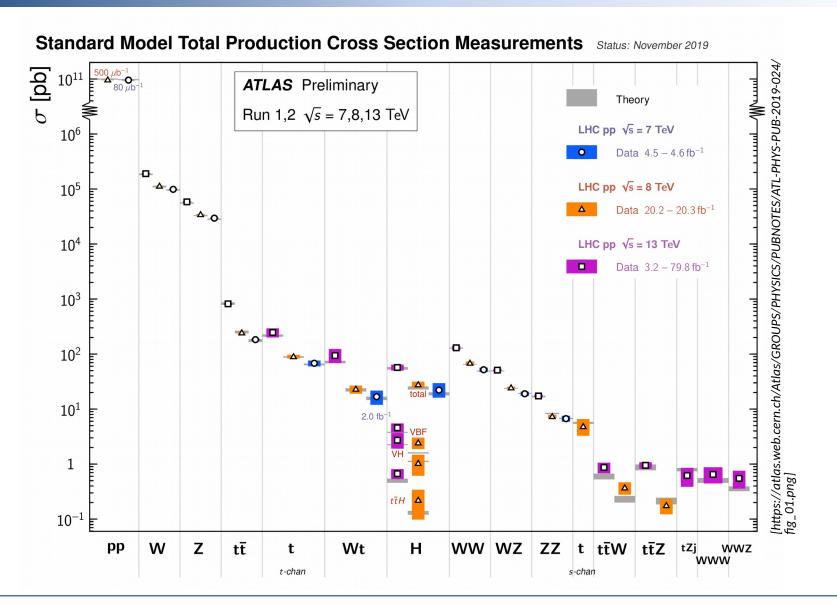

e

Geneva

Excellent performance of LHC and detectors

[https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2]

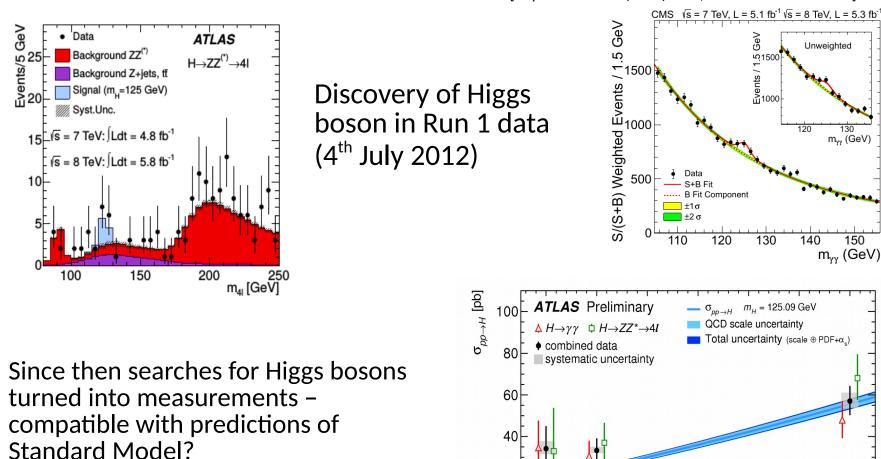
- Proton-proton data taking in Run 2 finished.
- 158 fb⁻¹ proton-proton data delivered by the LHC 2015 -2018.
- About 140 fb⁻¹ available for analyses.
- Significantly more data than in Run 1
- Only very few analyses use the full dataset already, thus many more results to come.


What can we measure?

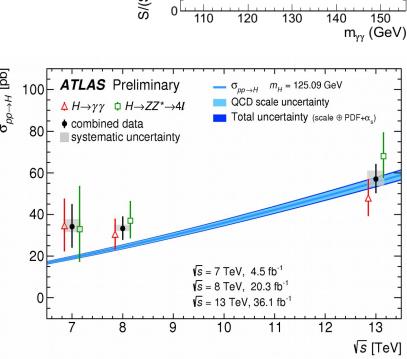
http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html]

proton - (anti)proton cross sections Predictions for processes of the 10⁹ 10⁸ Standard Model 10⁸ 10⁸ (cross section is measure on how 10⁷ 10⁷ **Tevatron** LHC frequent a process occurs) 10⁶ 10⁶ 10⁵ 10⁴ 10³ Higgs boson productions: $\sigma_{i,i}(E_{\tau}^{jet} > \sqrt{s/20})$ 1 Higgs bosons in about 10¹⁰ 10 (qu collisions 10¹ sec for (e.g. in 2017: about 3 million collisions ь 10[°] $\sigma_{int}(E_r^{jet} > 100 \text{ GeV})$ per second) 10⁻¹ 10 events 10⁻² 10⁻² 10⁻³ 10 Need to run complex algorithms 10-4 during data-taking to filter processes 10⁻⁵ M_=125 Ge 10⁻⁵ we are really interested in.... 10⁻⁶ 10-6 \rightarrow trigger W.IS2012 10⁻⁷ 10⁻⁷ 10 0.1 1 Maybe unknown physics down there? √s (TeV)

Precision measurements of the Standard Model



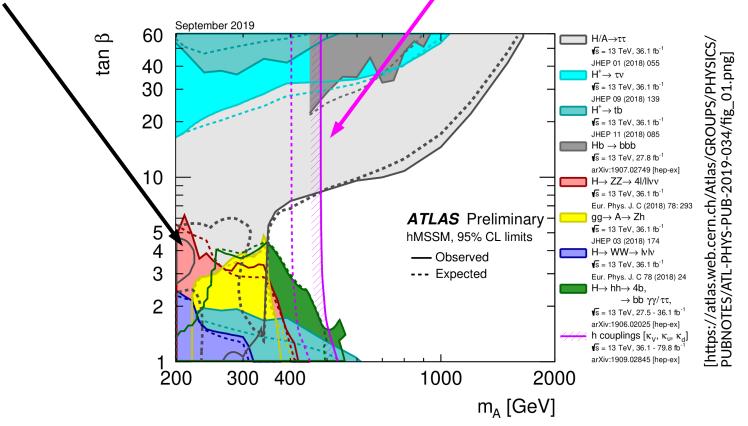
Completing Standard Modell: Higgs boson



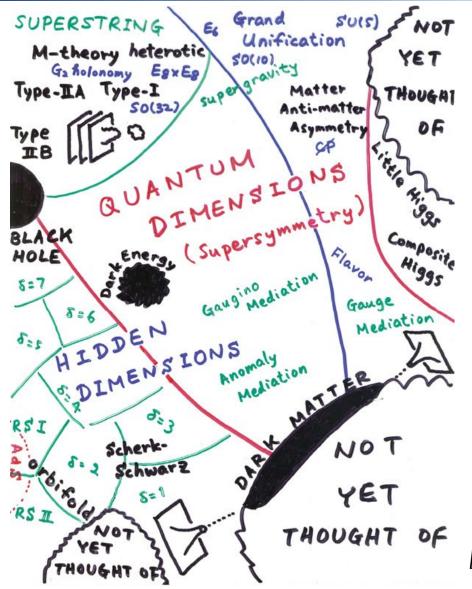
Unweighted

m_{γγ} (GeV)

 \rightarrow So far no deviations



More Higgs bosons?


Many extensions of the Standard Model predict more than one Higgs boson:

- E.g. 2HDM models predict 5 Higgs bosons: two neutral CP even (h, H), one CP odd (A) and two charged Higgs bosons (H⁺⁻)
- Can reinterpret measurements of the Higgs boson found in these models
- Can search for additional Higgs bosons

Is there anything else?

SM not perfect:

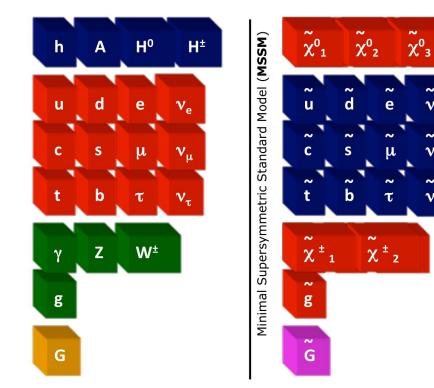
- No explanation for Dark Matter (DM)
- No explanation for matterantimatter asymmetry
- ..

Plenty of ideas to solve at least some of them

Lots of possibilities to look for

[Illustration by Hitoshi Murayama]

particle

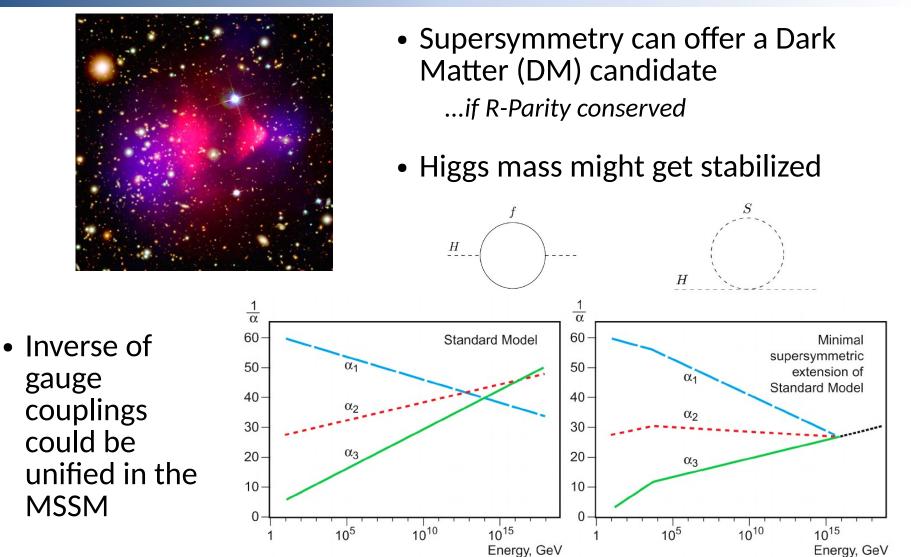

 \rightarrow roughly doubling of number of particles wrt Standard Model in the Minimal Supersymmetric Standard Model

Extended Higgs sector necessary

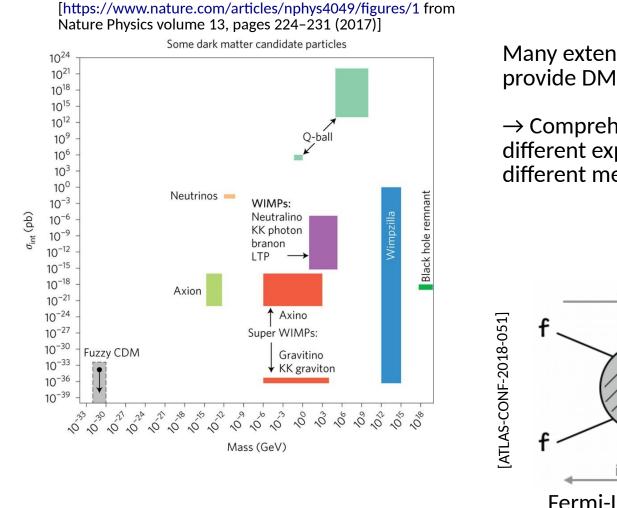
Supersymmetric partners of W, Z and Higgs bosons mix to charginos and neutralinos

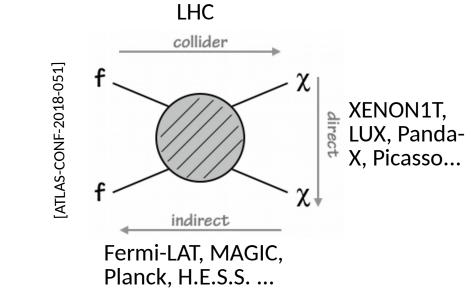
One solution: Supersymmetry (SUSY)

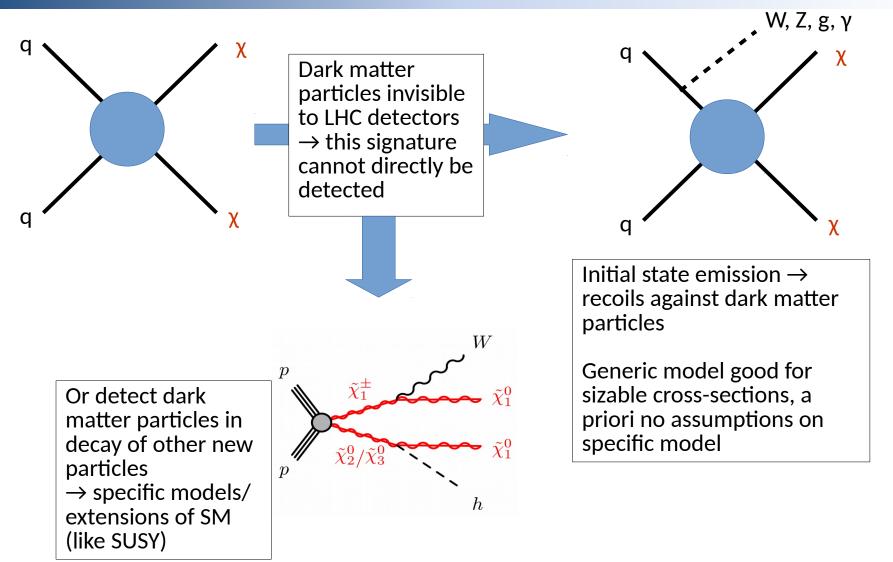
- Symmetry between fermions and bosons
- Supersymmetric partner particles to every Standard Model



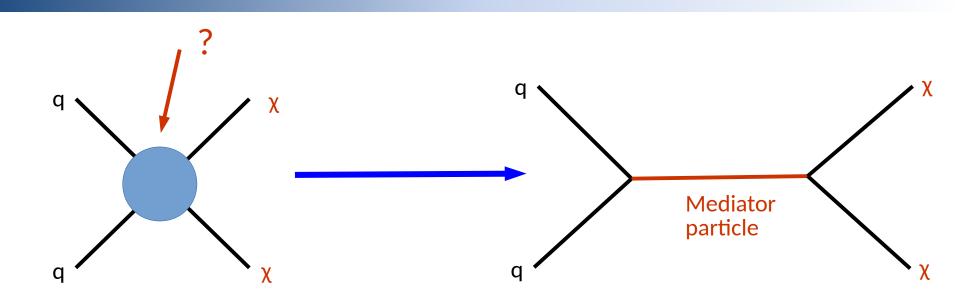
 χ^0_4


Motivations

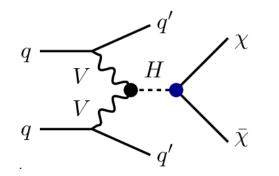

But not the only candidate for Dark Matter!

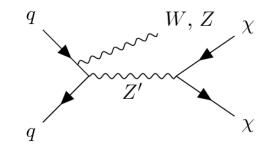

Many extensions beyond the SM provide DM candidates, not only SUSY.

→ Comprehensive search program by different experiments, and using different methods necessary.

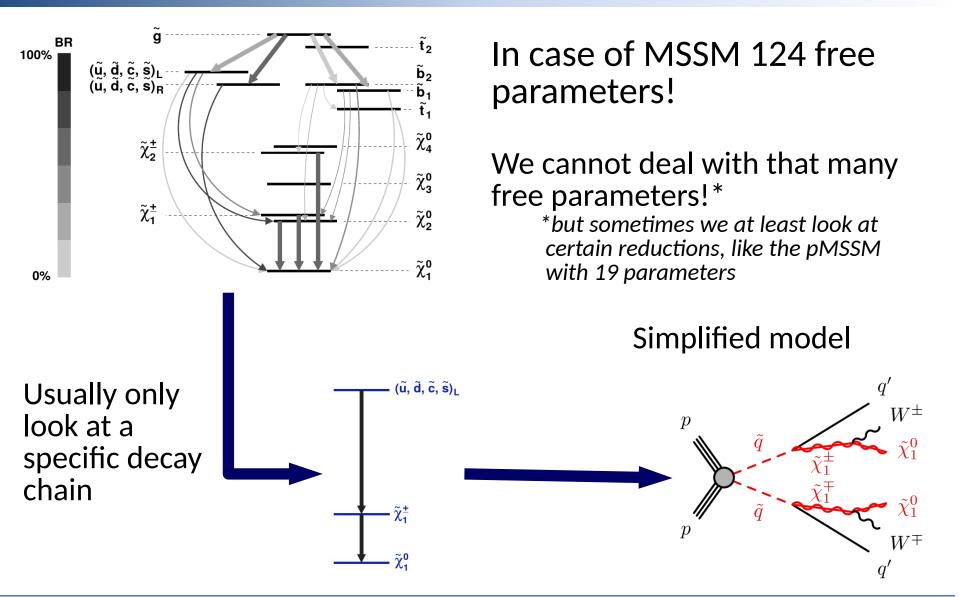


Dark matter models at colliders

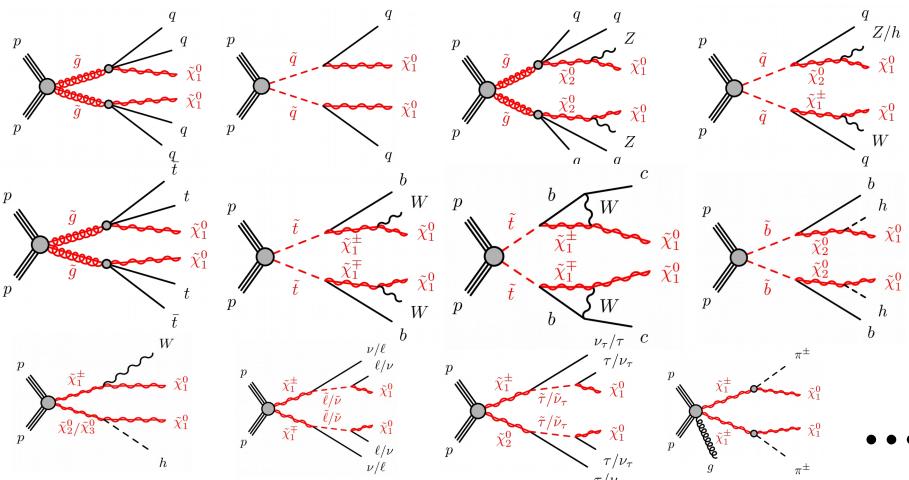



Dark matter models with mediators

Mediator particle can be SM particle (Z or H)

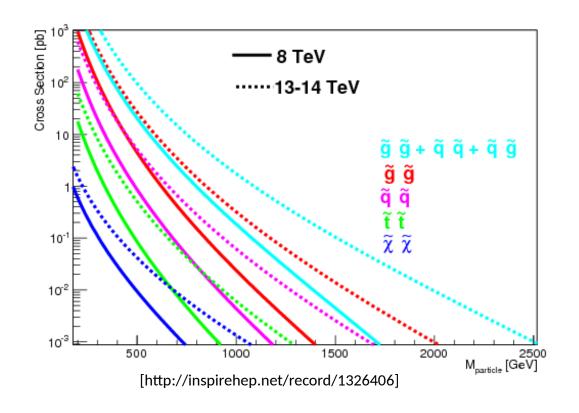


or a new particle – either spin 1 or 0 – vector-like particle or scalar-like, or Two-Higgs-Doublet Model


Supersymmetric models

Many different simplified models

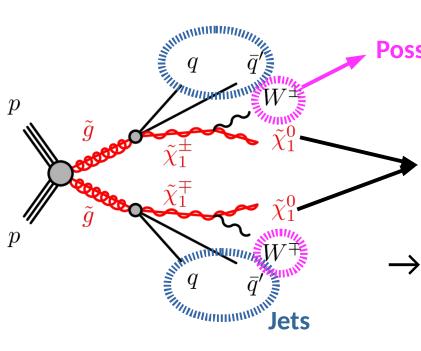
=> Very different experimental signatures to look for!*


* We can get back to complete SUSY model by combining different simplified models/signatures.

Searches for supersymmetric particles

Typically organize searches from 'easy' to 'more challenging' → cross section

- High cross section for production of gluinos and squarks if not too heavy
 - → early searches in Run 2, many results available, not the focus of this talk



- Smaller cross section for chargino and neutralino production
 → but obtain sensitivity by using much more data statistics
 - \rightarrow profit significantly from the full Run 2 statistics

Example signature

E. g. strong production:

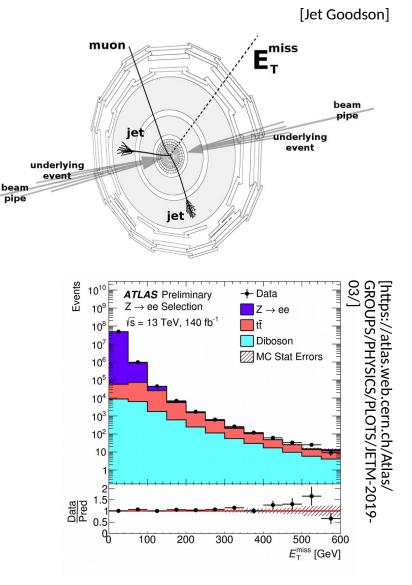
Possibly leptons

Lightest supersymmetric particle (LSP): stable in Rparity conserving theories → missing transverse momentum

 \rightarrow Jets + leptons + E_{T}^{miss}

Common to all searches in this talk: E_{τ}^{miss}

Invisible particles to the detector (like neutrinos or dark matter particles) result in a momentum imbalance in the transverse plane to the proton-proton collision

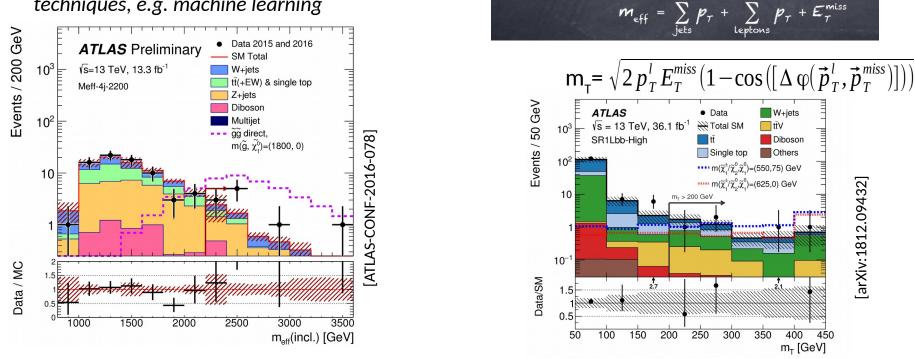

=> missing transverse momentum (E_{τ}^{miss})

Calculated using the x- and ycomponents:

$$E_{x(y)}^{\text{miss}} = E_{x(y)}^{\text{miss},\mu} + E_{x(y)}^{\text{miss},e} + E_{x(y)}^{\text{miss},\gamma} + E_{x(y)}^{\text{miss},\tau} + E_{x(y)}^{\text{miss},\text{jets}} + E_{x(y)}^{\text{miss},\text{soft}}$$

The **soft term** is composed of all tracks or energy deposits not associated to a reconstructed particle.

E_{T}^{miss} can also arise from mismeasurements or pile-up \rightarrow important to minimize this!

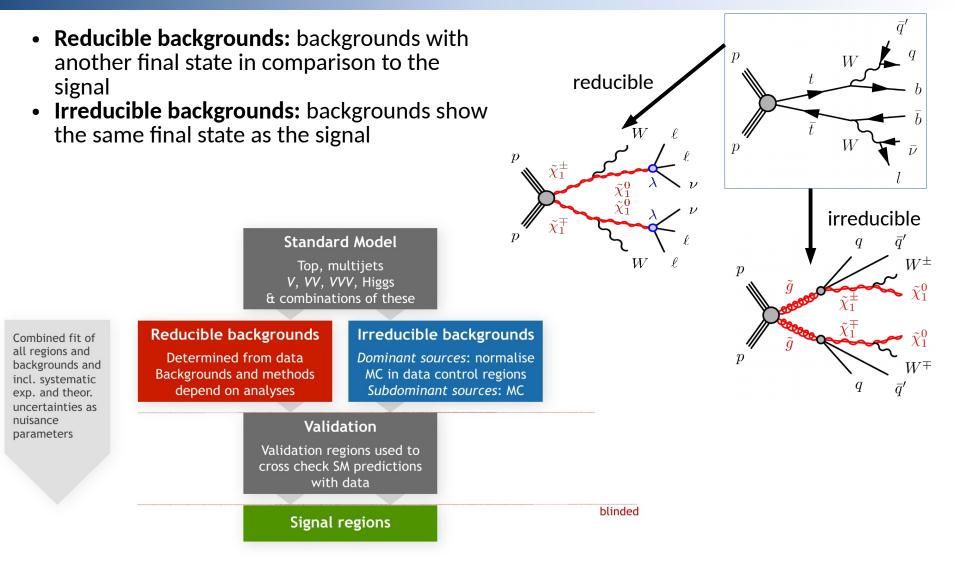


Distinguish signal from background

Use kinematic variables to discriminate signal from background.

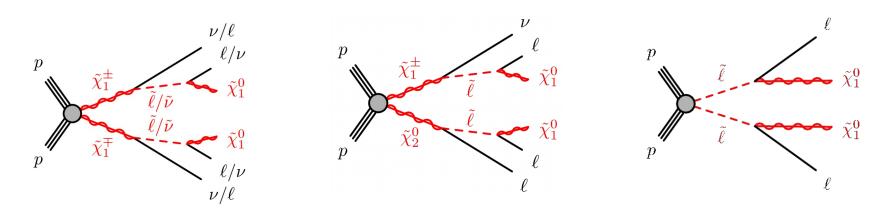
Some analyses just use simple combination of cuts on kinematic variables \rightarrow ' cut-and-count', but also more and more shape analyses or analyses using more sophisticated techniques, e.g. machine learning

trigger threshold


SM (background)

"signal region"

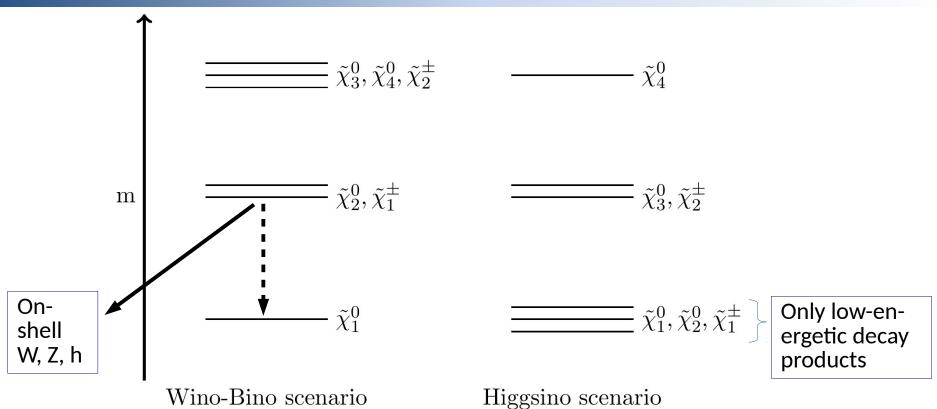
SUSY


Essential to estimate the backgrounds

Focus on chargino/neutralino production - possible decay modes

Decays of charginos/neutralinos/sleptons **often** studied in multilepton signatures + E_T^{miss}:

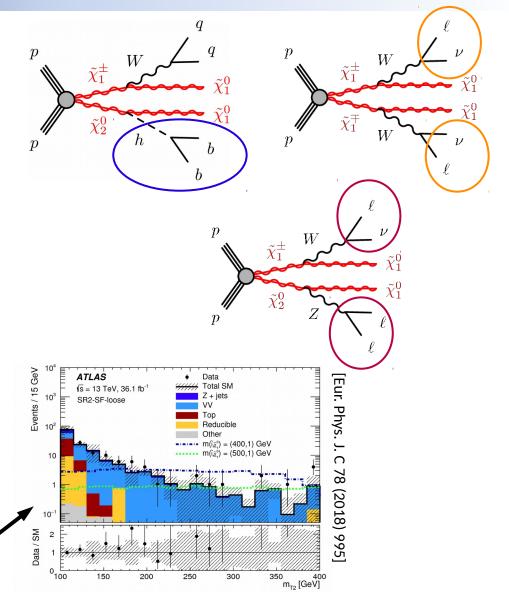
 \rightarrow 2,3 or 4 leptons \rightarrow rather clean signatures


• Main backgrounds:

- Reducible: fakes \rightarrow data-driven background estimation
- Often suppression of top backgrounds by (b-tagged) jet veto

But not only!

Classification of searches for charginos and neutralinos


- Depending on parameters in the SUSY model, mass difference between LSP and lightest charginos/next-to-lightest neutralinos sizeable (so that on-shell emission of W, Z, h possible), or very compressed mass spectrum.
- Depends on the fraction of Wino, Bino, Higgsino component in LSP and lightest chargino/next-to-lightest neutralino.

Searches for Wino/Bino scenarios

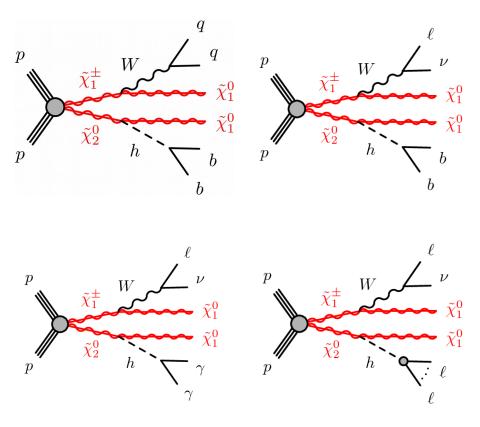
- Pair-production of charginos or nextto-lightest neutralino + chargino.
- Emission of on-shell (or not too much off-shell) W, Z and Higgs bosons.
- Can use decay products of these to search for these signatures.
- In case of emission of a Higgs boson, can exploit specific characteristics of Higgs boson decays, e.g. decays into bb.
- In case of emission of WW or WZ, relatively clean signature of two or three leptons → dedicated searches for this in multi-lepton channels.

e.g. search for 2 or 3 leptons + E_{T}^{miss}

Searches for neutralinos/charginos with decays to a Higgs

[Phys. Rev. D 100 (2019) 012006]

Often a Higgs boson is created in decays of neutralinos.


Discovering corresponding signatures would explicitly link Higgs bosons with supersymmetric particles. Necessary for SUSY solving hierarchy problem!

Spezialized searches: Pair-production of charginos and neutralinos; chargino decays to W and LSP, neutralino to Higgs and LSP.

Different signatures depending on decay of Higgs:

- Hadronic (with bb),
- 1 e/μ + bb,
- two same-sign leptons,
- 3 leptons,
- 1 e/μ + γγ

\rightarrow different searches

Fully hadronic decays – 36.1 fb⁻¹

First time targeting this decay at LHC!

p

p

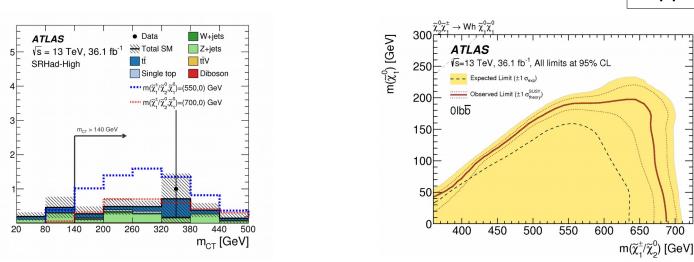
[Phys. Rev. D 100 (2019) 012006

W

 $\tilde{\chi}_1^{\pm}$

Fully hadronic signatures are very difficult to cover in searches for electroweak SUSY particles due to low object multiplicity.

 \rightarrow Need additional handle for suppression of hadronic backgrounds.

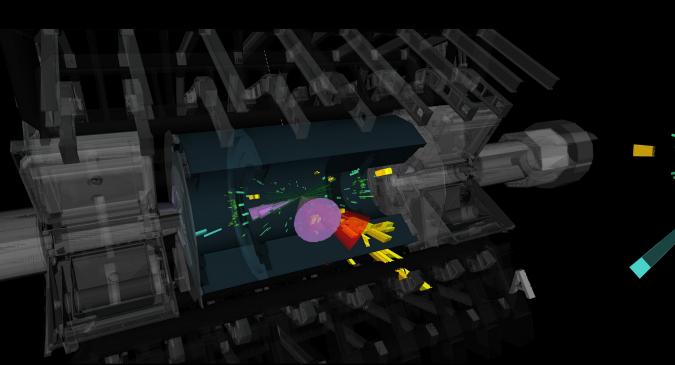

Achieved in this case by selecting events with two b-tagged jets + 2-3 other jets.

Mass of two b-tagged jet system needs to be consistent with Higgs mass; mass of 2 other jets consistent with W mass. + requirements on E_{τ}^{miss} , and contransverse mass: $m_{\text{CT}} = \sqrt{2p_{\text{T}}^{b_1}p_{\text{T}}^{b_2}(1 + \cos \Delta \phi_{bb})}$,

Useful for tt suppression.

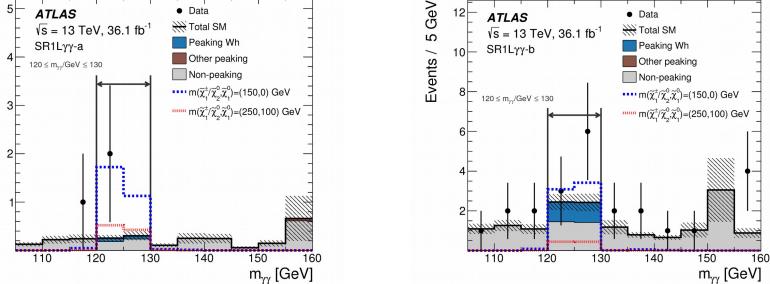
q

b

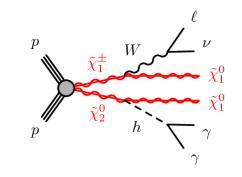

Events / 60 GeV

[Phys. Rev. D 100 (2019) 012006]

Run: 306384 Event: 3183769960 2016-08-16 02:49:59 CEST SRHad-High


Events / 5 GeV

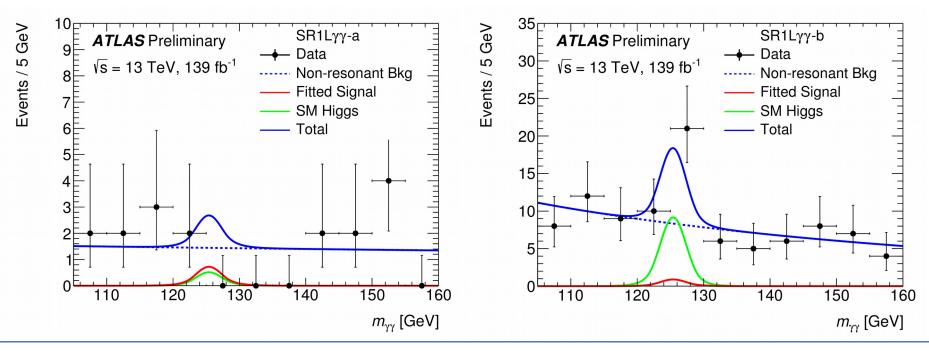
1 lepton + 2 photons – 36.1 fb^{-1}


 $H \rightarrow \gamma \gamma + W \rightarrow Iv + E_{\tau}^{miss}$ very clean signature (although small branching ratio).

Select $m_{\gamma\gamma}$ consistent with Higgs mass + multiple criteria on transverse mass variables to reject backgrounds containing W bosons.

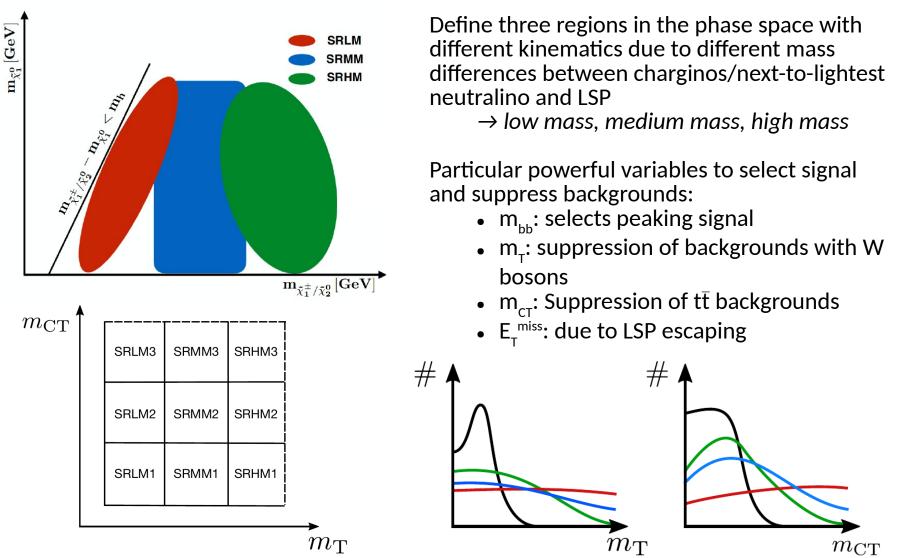
- Two background categories: non-peaking and peaking backgrounds.
- Peaking backgrounds (Wh) from MC.
- Non-peaking backgrounds from side-band fit.

J. Lorenz, Searching for Dark Matter in association with Higgs bosons

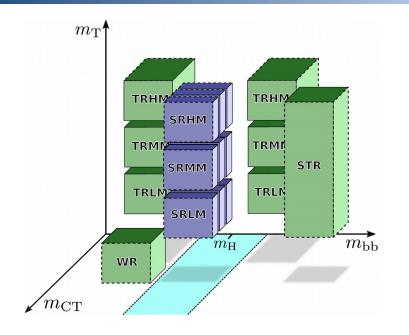


Small excesses in both SRs of $p_0 = 0.027$ and 0.087

Improved 1 lepton + 2 photons analysis for 139 fb⁻¹

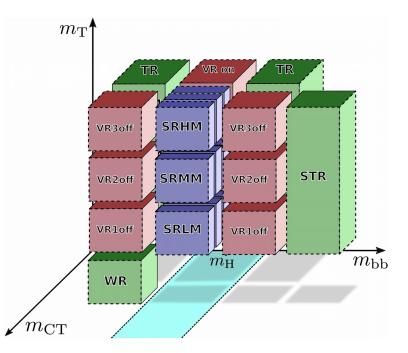


- Re-look at signal regions with excesses in 139 fb⁻¹.
- Improved background and signal model:
 - Peaking background and signal described by double-sided Crystal Ball functions
 - Non-peaking backgrounds (side-band) by fitting $f_{k;d}(x; b, \{a_k\}) = (1 x^d)^b x^{\sum_{j=0}^k a_j \log(x)^j}$
- Data consistent with background estimates.



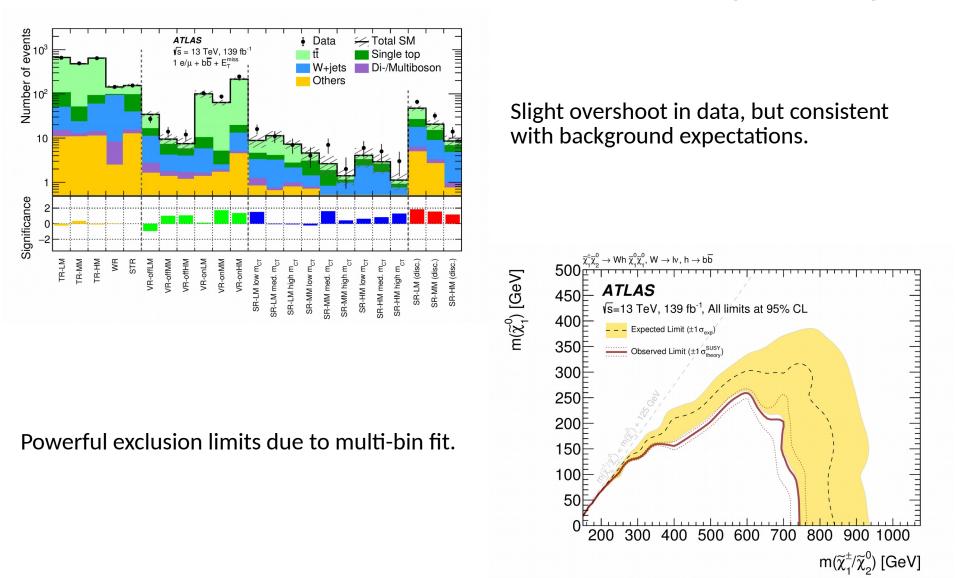
1 lepton + 2 b-jets (139 fb⁻¹)

1 lepton + 2 b-jets (139 fb⁻¹)



Validation regions defined to check extrapolation directions.

[arXiv:1909.09226

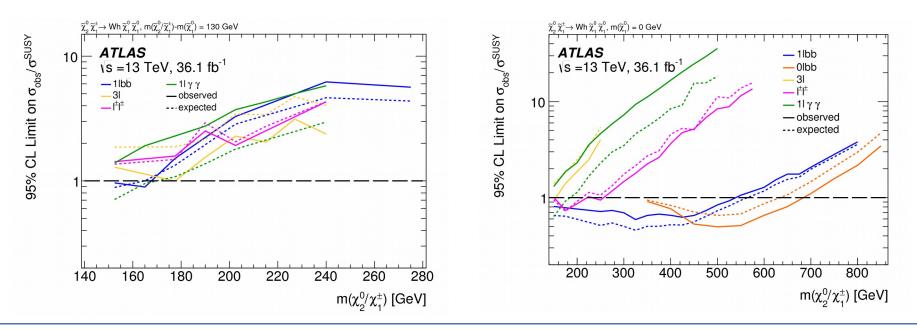

Dominant backgrounds $t\bar{t}$, single top, W+jets

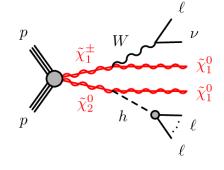
- \rightarrow irreducible, estimated via control regions
- \rightarrow low m_{τ} for W+jets
- $\rightarrow m_{_{bb}}$ sidebands and low $m_{_{CT}}$ for $t\bar{t}$
- \rightarrow high m_{ct} and m_{bb} sideband for single top

1 lepton + 2 b-jets (139 fb⁻¹)

[arXiv:1909.09226]

Multi-lepton

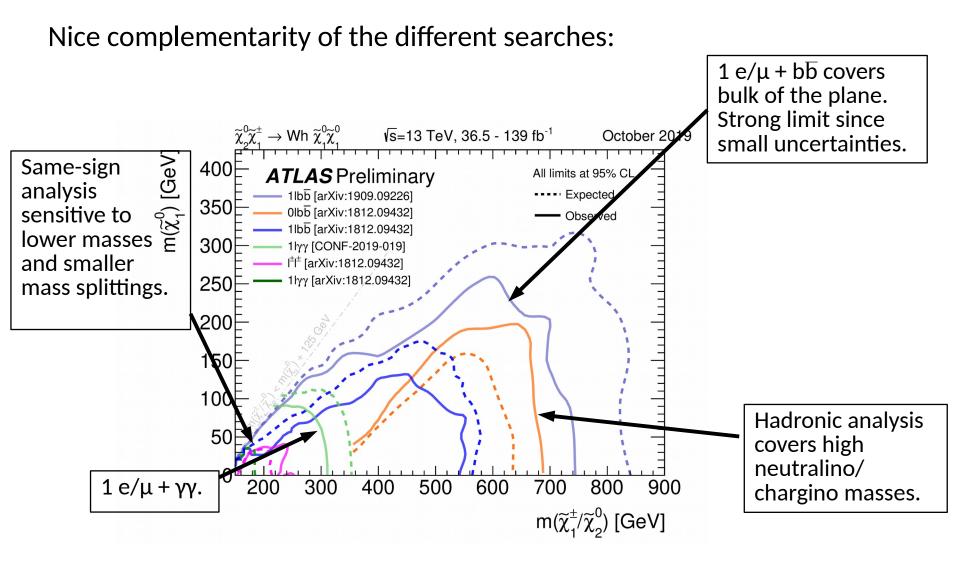

[Phys. Rev. D 100 (2019) 012006]


Can also select decay modes of $h \rightarrow WW$ or $\rightarrow ZZ$ \rightarrow leptonic signatures

Selection of two leptons (e or μ) of the same charge \rightarrow Good background suppression (i.e. $t\bar{t}$), but precise estimate of fake background needed

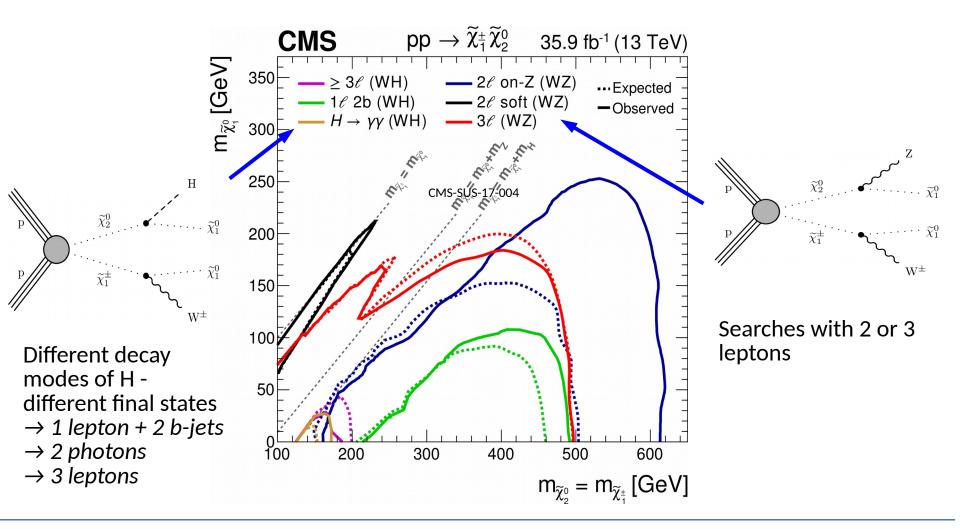
Or: Selection of events with three leptons

Channels more sensitive towards smaller mass differences.

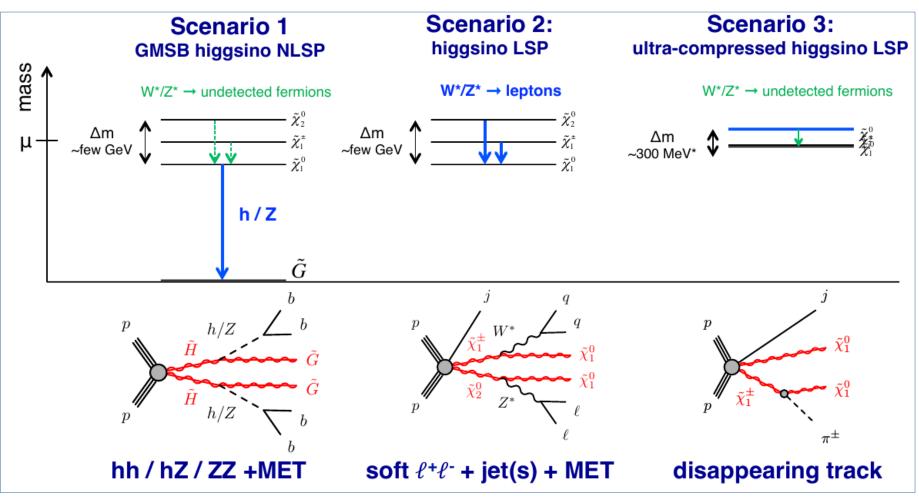


Searches for neutralinos with decays to a Higgs

[ATL-PHYS-PUB-2019-044]

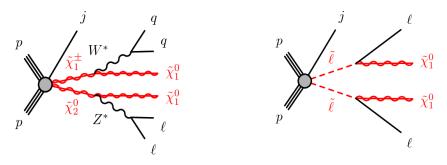


Chargino/neutralino production with different decays


[JHEP 03 (2018) 160]

CMS combined different EWK searches

Naturalness arguments requires light higgsinos with similar masses.

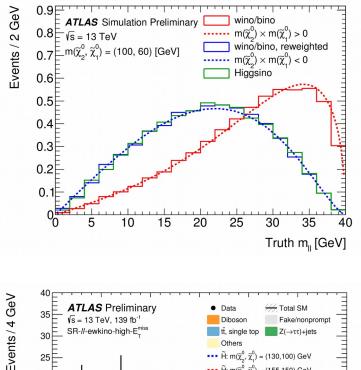

[B. Hooberman, SUSY17]

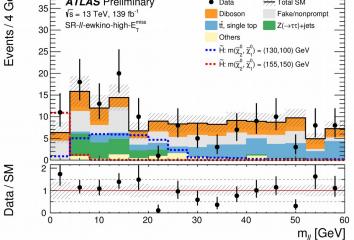
Compressed higgsinos/sleptons

Significant lower invariant mass $m_{_{\rm I\!I}}$ for models with Higgsinos

 \rightarrow analysis requiring extremely low energetic leptons and low m₁

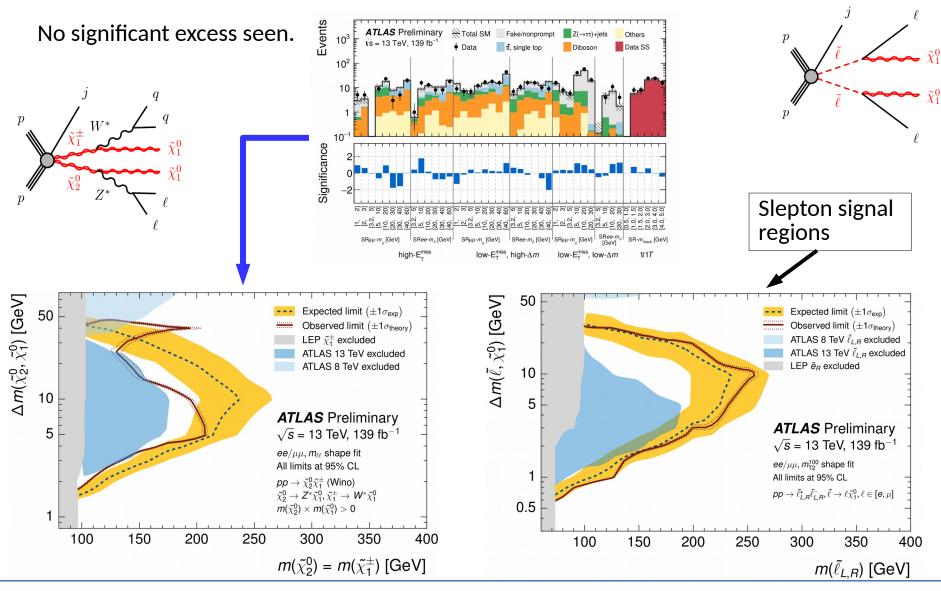
→ using electrons down to $p_{\tau} = 4.5$ GeV and muons down to $p_{\tau} = 3$ GeV and $m_{\parallel} = 1$ GeV → huge progress in reconstruction of low energetic leptons


Two searches:

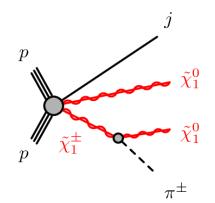

- Direct production of higginos using m₁
- Direct production of sleptons using m₁₂

 \rightarrow key is estimation of fake backgrounds!

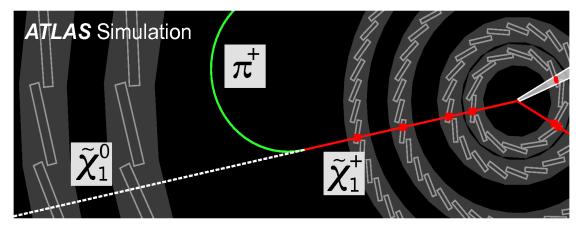
[ATLAS-CONF-2019-014]

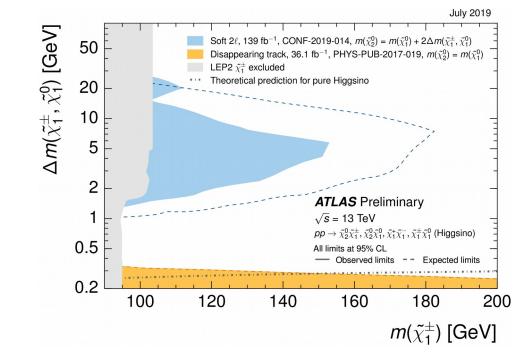


Compressed higgsinos/sleptons


J. Lorenz, Searching for Dark Matter in association with Higgs bosons

Disappearing tracks

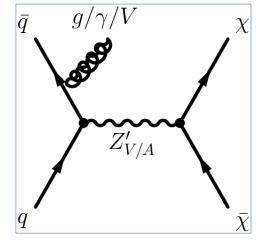

Long-lived chargino decaying to invisible + pion → disappearing track


Addition of IBL in LS1 allowed reconstruction of smaller minimal track lengths down to 12 cm \rightarrow pixel-only tracklets

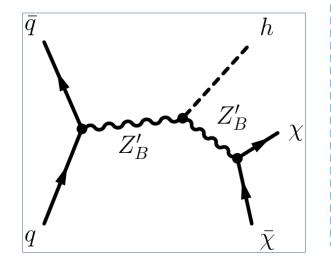
Old LEP limits partially superseded now.

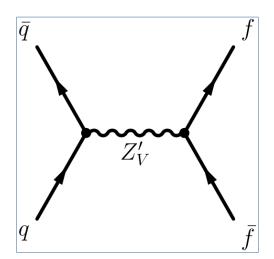
[JHEP 06 (2018) 022, ATL-PHYS-PUB-2019-044]

Searches for dark matter in BSM mediator searches

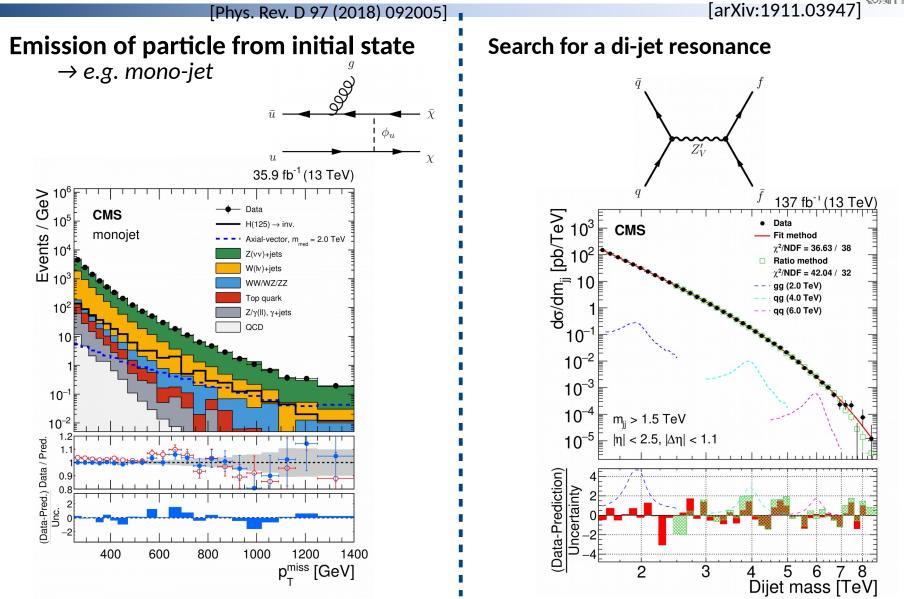


Pure production of dark matter particles invisible, need some other SM particle the dark matter particles are recoiling against.


Two possibilities:

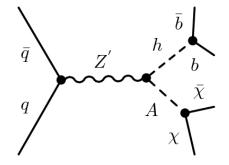

- Radiation in the initial state.
- Emission of SM particle from mediator.

Can also search for decays of mediator particle to SM particles.

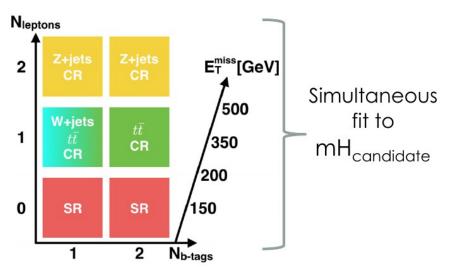

E_miss

Examples

Mono-h



[ATLAS-CONF-2018-039]

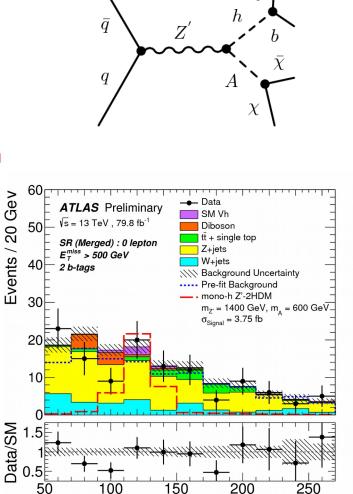

Search for dark matter produced in association with a SM Higgs boson decaying to $b\overline{b}$

 Signal regions for the resolved (two small-R jets) and merged regime (one large-R jet)

 Signal region without leptons, control regions with 1 (W+jets, tt) or 2 leptons (Z+jets).

Mono-h

[ATLAS-CONF-2018-039]


Search for dark matter produced in association with a SM Higgs boson decaying to $b\overline{b}$

• Signal regions for the resolved (two small-R jets) and merged regime (one large-R jet)

• Binned in b-jet multiplicity and E_{τ}^{miss} to increase sensitivity, simultaneous fit in mass of Higgs candidate.

No excess seen.

100

50

m₁[GeV]

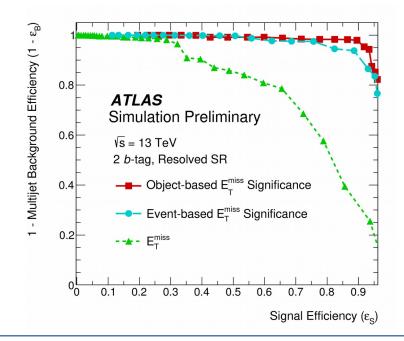
Improvements: E_{τ}^{miss} Significance

[ATLAS-CONF-2018-039

 E_{T}^{miss} Significance S provides information on how likely the measured E_{T}^{miss} is due to a resolution fluctuation.

 \rightarrow formerly used for this

New development: **Object-based Significance**:


$$\Rightarrow \qquad S^{2} = \frac{\left| \boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}} \right|^{2}}{\sigma_{\mathrm{L}}^{2} \left(1 - \rho_{\mathrm{LT}}^{2} \right)}.$$

$$S=rac{E_{
m T}^{
m miss}}{\sqrt{H_{
m T}}}$$

$$S^{2} = (\boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}})^{\mathrm{T}} \left(\sum_{i} \boldsymbol{V}_{i} \right)^{-1} (\boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}})$$

Covariance Matrix for each object

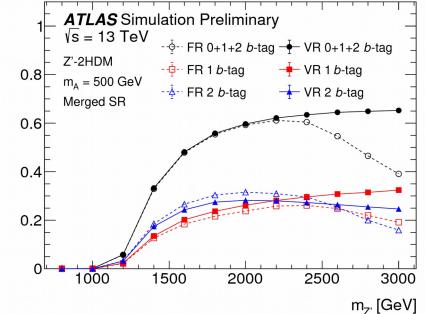
Depends on longitudinal variance and the correlation between longitudinal and transverse measurements.

→ depends on input objects to E_T^{miss} and their uncertainties; good discrimination between real and fake E_T^{miss}

Object-based Etmiss significance shows superior performance.

First results show also good modeling for full Run 2 data.

Improvements: VR track jets

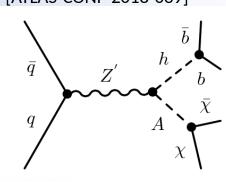


For the merged signal region improvements for high Z' masses in the identification of the two-b-tagged jets by using variable radius track jets Q

$$\mathbf{R} \to \mathbf{R}_{\mathrm{eff}}(p_{\mathrm{T}}) \approx \frac{\rho}{p_{\mathrm{T}}}$$

with $\rho = 30$ GeV, $R_{\min} = 0.02$ and $R_{\max} = 0.4$

Instead of using two small R=0.2 track jets.



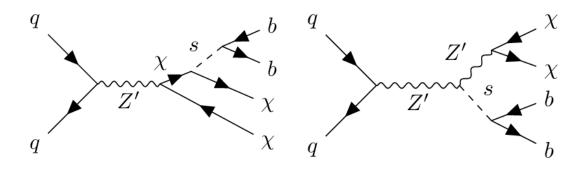
Mono-h

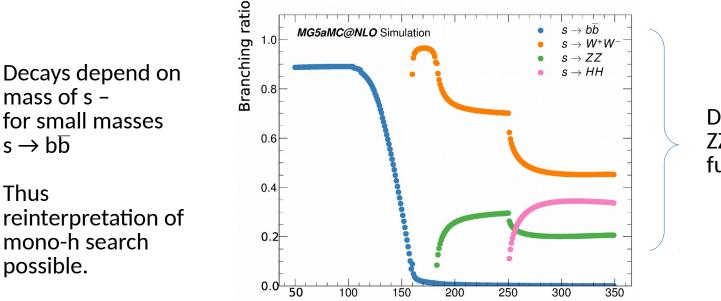
of other Higgs bosons.

1000 m_A [GeV] Observed 95% CL **ATLAS** Preliminary Expected 95% CL ($\pm 1\sigma$) 900 \sqrt{s} = 13 TeV, 79.8 fb⁻¹ PRL 119, 181804 h(bb) + E_T^{miss} : Z'+2HDM simplified model 800 $\tan \beta = 1, g_Z = 0.8, m_{\chi} = 100 \text{ GeV}, m_H = m_{H^{\pm}} = 300 \text{ GeV}$ Improvements 700 due to use of VR track jets. 600 500 Region where 400 object-based E_{T}^{miss} 500 1000 1500 2000 2500 3000 significance m_Z[′] [GeV] gets relevant.

Limits set on mass of mediator (Z') and boson A. Dark

matter mass fixed, as well as coupling strength and mass

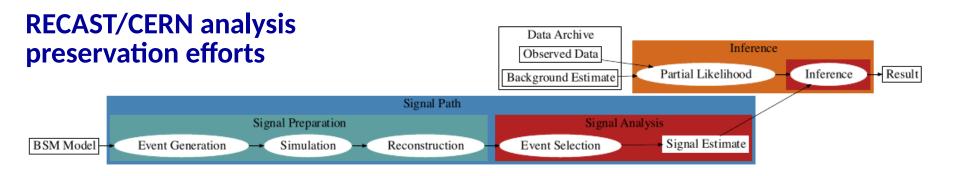

Reinterpreation of the mono-h search for dark Higgs models


[ATL-PHYS-PUB-2019-032

Dark Higgs model:

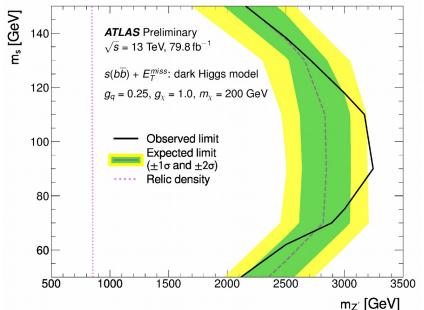
- Additional Higgs boson s. •
- Motivated by need to generate masses in DM sector.
- Can relax DM relic abundance constraints by opening up additional annihilation channel.

m_s [GeV]


Decays s \rightarrow WW, ZZ, HH topic of future analyses

Thus

Reinterpreation of the mono-h search for dark Higgs models

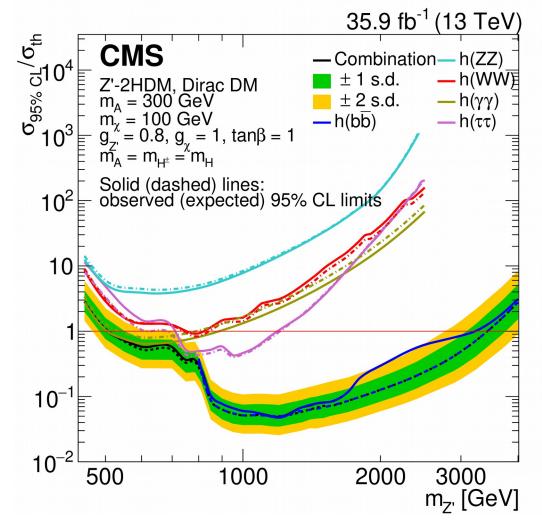

[ATL-PHYS-PUB-2019-032]

Mono-h search preserved in RECAST – one of the first analyses preserved at ATLAS!

Allows analysis of any other signal model/scenario in the future using the original (preserved) analysis software with minimal effort.

Exclusion limits up to a Z' mass of 3.2 TeV.

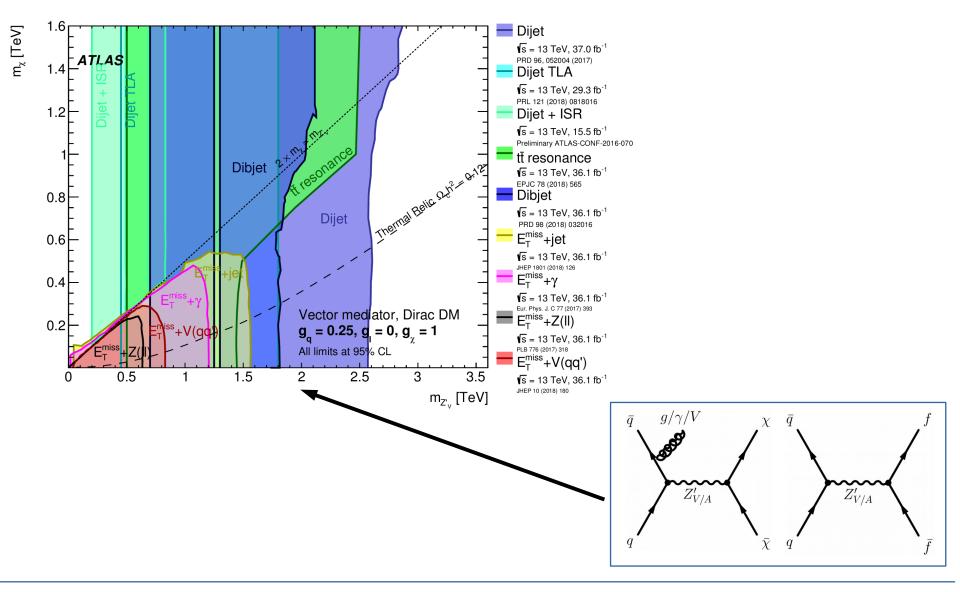
Mono-h searches at CMS



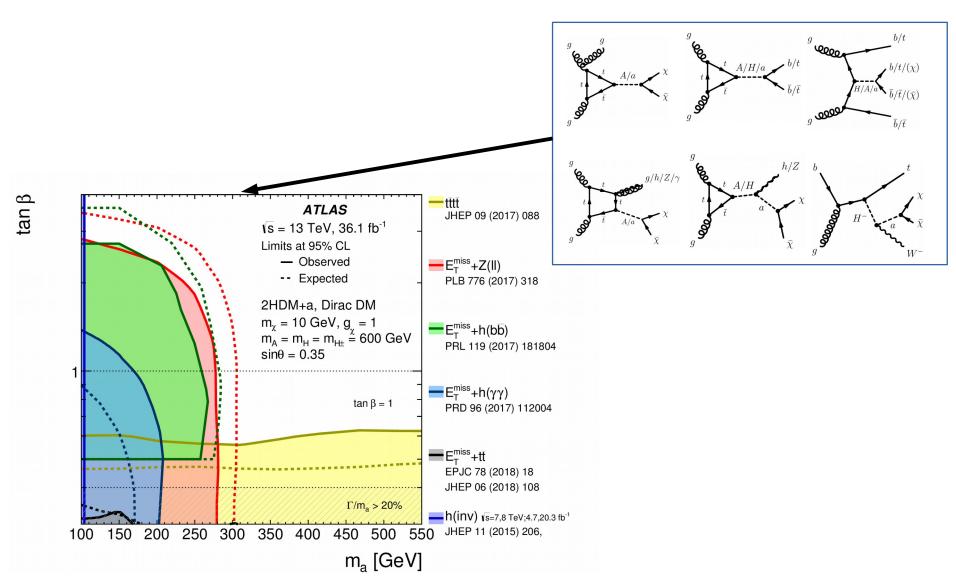
[arXiv:1908.01713 [hep-ex]]

• Searches for $h \rightarrow b\overline{b} + E_{T}^{miss}$ in case of low Z' masses in certain models not sensitive (as then relatively low E_{T}^{miss} needed).

 \rightarrow Study other channels like h $\rightarrow \tau\tau$ and h $\rightarrow \gamma\gamma$, and also h \rightarrow ZZ and h \rightarrow WW + E_{τ}^{miss}


• Combination of all channels.

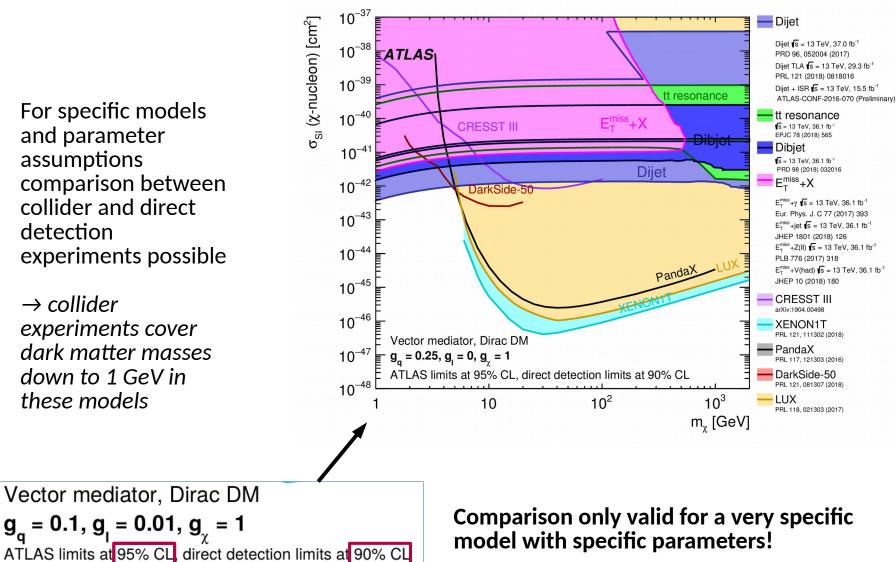
Summary of searches for dark matter in BSM mediator models


[JHEP 05 (2019) 142]

Summary of searches for dark matter in BSM mediator models

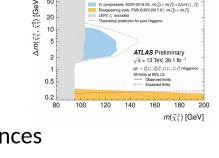
[JHEP 05 (2019) 142]

05.12.2019


Comparison to non-collider dark matter searches

[JHEP 05 (2019) 142]

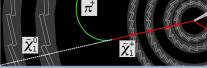
For specific models and parameter assumptions comparison between collider and direct detection experiments possible


 \rightarrow collider experiments cover dark matter masses down to 1 GeV in these models

New directions

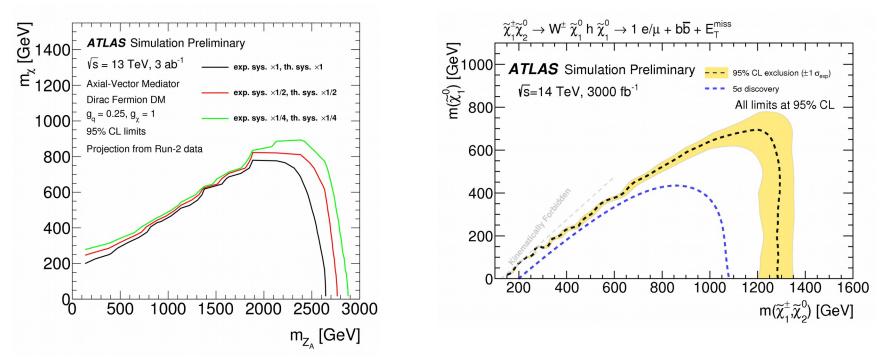
So far no dark matter particles discovered (although fluctuations present in some SUSY searches), but may hide in more difficult scenarios!

- Comprehensive search program for DM be aware of the model • dependency!
- Particular interest in models with Higgs bosons, due to need to generate mass for the DM particles/link the Higgs bosons to the DM sector. + for SUSY: Higgs needs to be linked to SUSY particles to solve hierarchy problem!
- Only getting now sensitive to difficult SUSY EWK scenarios \rightarrow Small Higgsino masses motivated by naturalness arguments.
- Using sophisticated modern techniques helps!
 - \rightarrow Separate signal from background better by using shape differences
 - \rightarrow Machine learning, boosted jets, multi-bin/shape fits
- Not covered in this talk, but comprehensive search program: long-lived • particles
 - \rightarrow E.g. disappearing track searches
 - \rightarrow Also new particle experiments proposed, e.g. FASER, ShiP, ...



10

issed, SUSY-2016-25, $m(\tilde{\chi}_2^0) = m(\tilde{\chi}_1^0) + 2\Delta m(\tilde{\chi}_1^1)$ ring track, PUB-SUSY-2017-01, $m(\tilde{\chi}_2^0) = m(\tilde{\chi}_1^0)$



Where we might go to with HL-LHC

[ATL-PHYS-PUB-2018-043, ATL-PHYS-PUB-2018-048]

- Expected to reach limits up to ~1200 GeV for specific chargino/neutralino decays for HL-LHC
- Dark matter searches also reaching limits in 2.5 3 TeV ballpark (on the mediator)
- Searches not only profit from higher statistics, but also from improvements in techniques, like machine learning

...and what we could do at future colliders

[CERN-ESU-004]

Constraints from relic density:

- Pure Wino: 3 TeV
- Pure Higgsino: 1.1 TeV

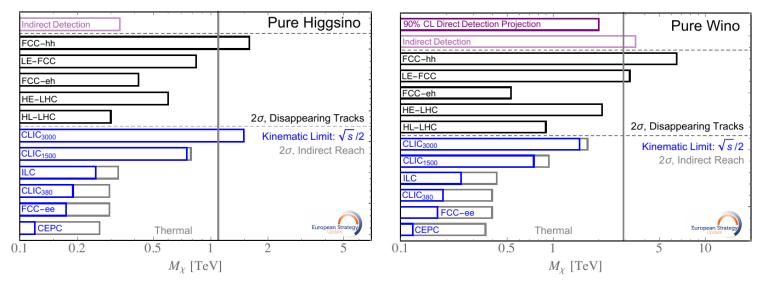
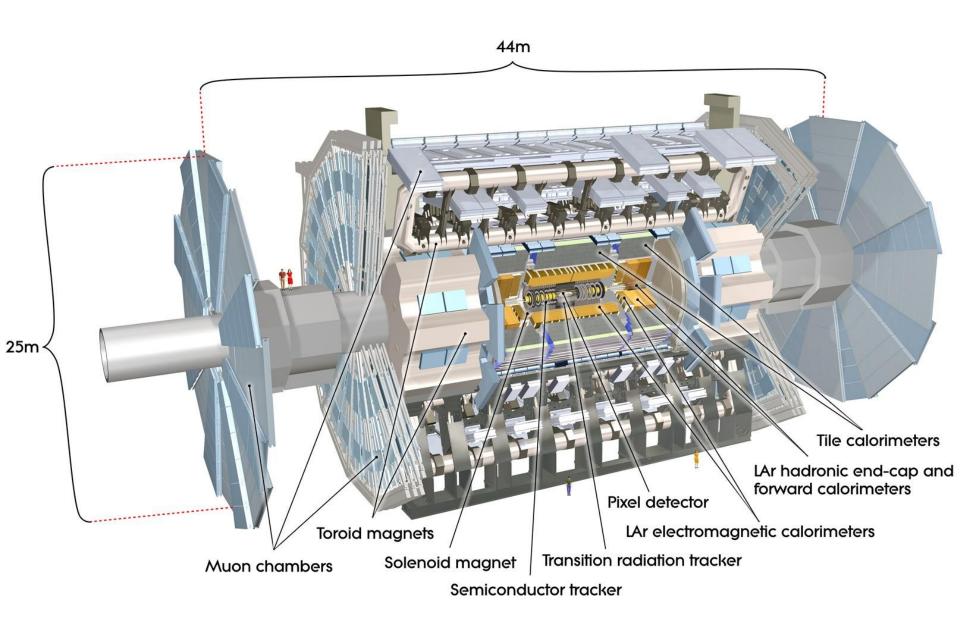


Fig. 8.14: Summary of 2σ sensitivity reach to pure Higgsinos and Winos at future colliders. Current indirect DM detection constraints (which suffer from unknown halo-modelling uncertainties) and projections for future direct DM detection (which suffer from uncertainties on the Wino-nucleon cross section) are also indicated. The vertical line shows the mass corresponding to DM thermal relic.

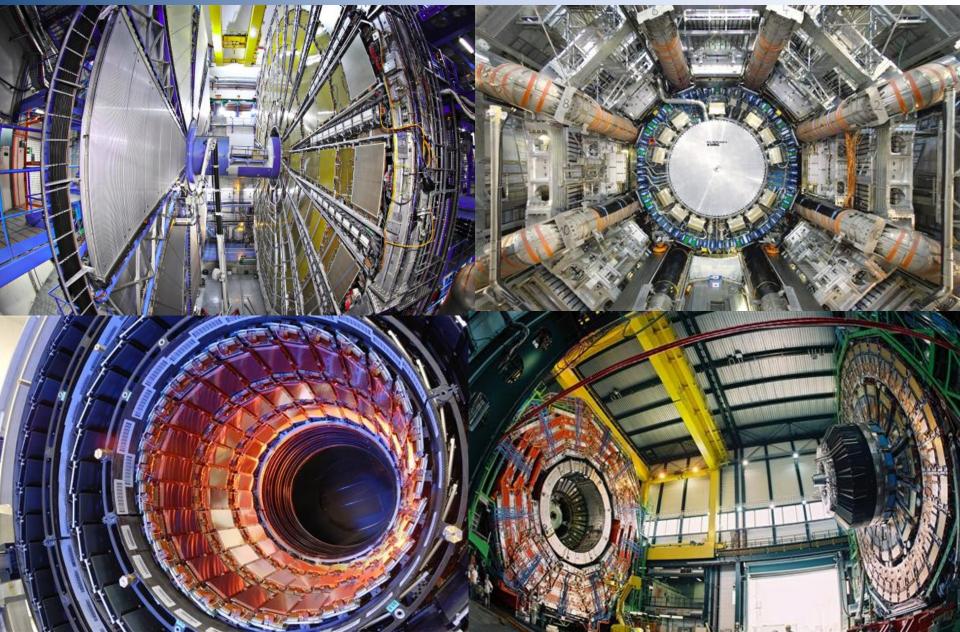
Summary

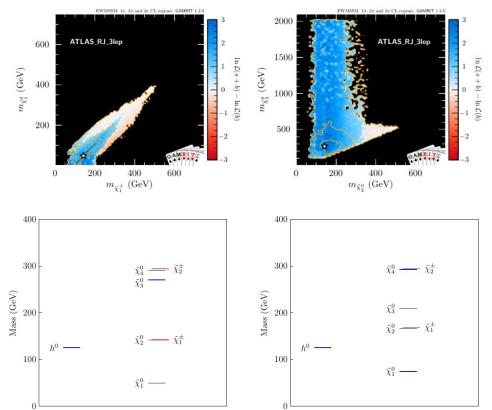
	-0		Signatur	e j	<i>L dt</i> [fb ⁻	- <u>1</u>	Mass limit	일을 많은 이것이 않는				Reference
į	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_1^0$	0 e, μ mono-jet	2-6 jets 1-3 jets	$E_T^{ m miss} \ E_T^{ m miss}$	139 36.1	 <i>q</i> [10× Degen.] <i>q</i> [1×, 8× Degen.] 	0.43	0.71	-	1.9	$m(\tilde{\chi}_{1}^{0}) < 400 \text{ GeV} \\ m(\tilde{q}) - m(\tilde{\chi}_{1}^{0}) = 5 \text{ GeV}$	ATLAS-CONF-2019-040 1711.03301
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{\rm miss}$	139	ĩg ĩg		Forbidde	en	2.35 1.15-1.95	$m(\tilde{\chi}_{1}^{0})=0 \text{ GeV} \ m(\tilde{\chi}_{1}^{0})=1000 \text{ GeV}$	ATLAS-CONF-2019-040 ATLAS-CONF-2019-040
į	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	3 e, μ ee, μμ	4 jets 2 jets	$E_T^{ m miss}$	36.1 36.1	ĩg ĩg			1.2	1.85	$m(\tilde{\chi}_{1}^{0}) < 800 \text{ GeV}$ $m(\tilde{g})-m(\tilde{\chi}_{1}^{0}) = 50 \text{ GeV}$	1706.03731 1805.11381
į	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 e, μ SS e, μ	7-11 jets 6 jets	$E_T^{\rm miss}$	36.1 139	755 755			1.15	1.8	m($ ilde{\chi}_1^0$) <400 GeV m($ ilde{g}$)-m($ ilde{\chi}_1^0$)=200 GeV	1708.02794 1909.08457
į	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0-1 <i>e</i> , μ SS <i>e</i> , μ	3 <i>b</i> 6 jets	$E_T^{ m miss}$	79.8 139	ĩ5 55			1.25	2.25	$m(\tilde{\chi}_{1}^{0})$ <200 GeV $m(\tilde{g})$ - $m(\tilde{\chi}_{1}^{0})$ =300 GeV	ATLAS-CONF-2018-041 ATLAS-CONF-2019-015
	$\tilde{b}_1\tilde{b}_1, \tilde{b}_1 {\rightarrow} b\tilde{\chi}_1^0/t\tilde{\chi}_1^\pm$		Multiple Multiple Multiple		36.1 36.1 139	$egin{array}{ccc} & & & & & & \\ & & & & & & \\ & & & & & $	len Forbidden Forbidden	0.9 0.58-0.82 0.74			$m(\tilde{k}_1^0)=300 \text{ GeV}, BR(b\tilde{k}_1^0)=1$ $0 \text{ GeV}, BR(b\tilde{k}_1^0)=BR(b\tilde{\ell}_1^+)=0.5$ $V, m(\tilde{k}_1^+)=300 \text{ GeV}, BR(t\tilde{\ell}_1^+)=1$	1708.09266, 1711.03301 1708.09266 ATLAS-CONF-2019-015
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	6 <i>b</i>	$E_T^{\rm miss}$	139	$egin{array}{ccc} ilde{b}_1 & Forbidden \ ilde{b}_1 & \end{array}$	0.23-0.48		0.23-1.35	$\Delta m(\tilde{\chi}^0_2, J)$ $\Delta m(\tilde{\chi}^0_2, J)$	$ \tilde{k}_{1}^{0} = 130 \text{ GeV}, \ m(\tilde{k}_{1}^{0}) = 100 \text{ GeV} \\ _{2}^{0}, \tilde{k}_{1}^{0} = 130 \text{ GeV}, \ m(\tilde{k}_{1}^{0}) = 0 \text{ GeV} $	1908.03122 1908.03122
inci	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0$	0-2 e, µ	0-2 jets/1-2	$b E_T^{miss}$	36.1	ĩ		1.	.0		$m(\tilde{\chi}_1^0)=1 \text{ GeV}$	1506.08616, 1709.04183, 1711.1152
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$	1 e, µ	3 jets/1 b	E_T^{miss}	139	ĩ ₁	0.44-0).59			$m(\tilde{\chi}_1^0)=400 \text{ GeV}$	ATLAS-CONF-2019-017
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$	$1 \tau + 1 e, \mu, \tau$	τ 2 jets/1 b	E_T^{miss}	36.1	\tilde{t}_1			1.16		m(~1)=800 GeV	1803.10178
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0 <i>e</i> , μ	2 c	E_T^{miss}	36.1	\tilde{c} \tilde{t}_1	0.46	0.85			$m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ $m(\tilde{\iota}_{1},\tilde{c})-m(\tilde{\chi}_{1}^{0})=50 \text{ GeV}$	1805.01649 1805.01649
		0 <i>e</i> , <i>µ</i>	mono-jet	$E_T^{\rm miss}$	36.1	Ĩ ₁	0.43				$m(\tilde{t}_1, \tilde{c}) - m(\tilde{\chi}_1^0) = 5 \text{ GeV}$	1711.03301
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	1-2 e, µ	4 <i>b</i>	$E_T^{\rm miss}$	36.1	ĩ ₂		0.32-0.88		$m(\tilde{\chi}_1^0) =$	$0 \text{ GeV}, m(\tilde{t}_1) - m(\tilde{\chi}_1^0) = 180 \text{ GeV}$	1706.03986
î	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 e, µ	1 <i>b</i>	$E_T^{\rm miss}$	139	ĩ ₂	Forbidden	0.86		$m(\tilde{\chi}_1^0)=3$	60 GeV, m(\tilde{t}_1)-m($\tilde{\chi}_1^0$)= 40 GeV	ATLAS-CONF-2019-016
)	${ ilde \chi}_1^{\pm} { ilde \chi}_2^0$ via WZ	2-3 e, μ ee, μμ	≥ 1	$E_T^{ m miss}$ $E_T^{ m miss}$	36.1 139	$ \begin{array}{c} \tilde{\chi}_{1}^{\pm} / \tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{1}^{\pm} / \tilde{\chi}_{2}^{0} \end{array} \hspace{2cm} \textbf{0.205} \end{array} $		0.6			$\mathbf{m}(\tilde{\chi}_1^{\pm})=0$ $\mathbf{m}(\tilde{\chi}_1^{\pm})-\mathbf{m}(\tilde{\chi}_1^{0})=5~\mathrm{GeV}$	1403.5294, 1806.02293 ATLAS-CONF-2019-014
)	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WW	2 e, µ		$E_T^{\rm miss}$	139	$\tilde{\chi}_{1}^{\pm}$	0.42				$m(\tilde{\chi}_1^0)=0$	1908.08215
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh	0-1 <i>e</i> , <i>µ</i>	$2 b/2 \gamma$	$E_T^{\rm miss}$	139	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ Forbidden		0.74			$m(\tilde{\chi}_1^0)=70 \text{ GeV}$	ATLAS-CONF-2019-019, 1909.0922
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via $\tilde{\ell}_L / \tilde{\nu}$	2 e, µ		E_T^{miss}	139	$\tilde{\chi}_1^{\pm}$		1.	.0		$m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$	ATLAS-CONF-2019-008
	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$	2 τ		E_T^{miss}	139	$\tilde{\tau} [\tilde{\tau}_L, \tilde{\tau}_{R,L}]$ 0.16-0	0.3 0.12-0.39				$m(\tilde{\chi}_1^0)=0$	ATLAS-CONF-2019-018
i	$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	2 e, µ	0 jets	$E_{T_{\rm miss}}^{\rm miss}$	139	ĩ		0.7			$m(\tilde{\chi}_{1}^{0})=0$	ATLAS-CONF-2019-008
		2 e, µ	≥ 1	E_T^{miss}	139	ĩ 0.256					$m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$	ATLAS-CONF-2019-014
ľ	$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	0 e, μ 4 e, μ	$\geq 3 b$ 0 jets	$E_T^{ m miss} \ E_T^{ m miss}$	36.1 36.1	<u>Й</u> 0.13-0.23 <u>Й</u> (0.3	0.29-0.88			$ \begin{array}{l} BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 1 \\ BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = 1 \end{array} $	1806.04030 1804.03602
	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	t 1 jet	$E_T^{\rm miss}$	36.1		0.46				Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
	Stable g R-hadron		Multiple		36.1	ĝ				2.0		1902.01636,1808.04095
1 I	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$		Multiple		36.1	$\tilde{g} = [\tau(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}]$				2.05 2.4	$m(\tilde{\chi}_1^0)=100 \text{ GeV}$	1710.04901,1808.04095
_	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	еµ,ет,µт			3.2	ν̃.			-	1.9	$\lambda'_{311}=0.11, \lambda_{132/133/233}=0.07$	1607.08079
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$	4 e, μ	0 jets	E_{T}^{miss}	36.1	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$		0.82	1.33		m($\tilde{\chi}_{1}^{0}$)=100 GeV	1804.03602
i	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$		4-5 large- <i>R</i> je Multiple	1	36.1 36.1	$ \begin{array}{c} \tilde{x}_{1}/\tilde{x}_{2} = [\tilde{y}_{433} \neq 0, \tilde{x}_{12k} \neq 0] \\ \tilde{g} = [m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}, 1100 \text{ GeV}] \\ \tilde{g} = [\chi_{112}''=2e-4, 2e-5] \end{array} $			1.3	1.9 2.0	$m(\tilde{\chi}_1^0) = 100 \text{ GeV}$ Large $\lambda_{112}^{\prime\prime}$ $m(\tilde{\chi}_1^0) = 200 \text{ GeV, bino-like}$	1804.03568 ATLAS-CONF-2018-003
;	$\tilde{t}, \tilde{t} \to t \tilde{\chi}_1^0, \tilde{\chi}_1^0 \to t b s$	Multiple			36.1	<i>ğ</i> [λ'' ₃₂₃ =2e-4, 1e-2]	0.5	5 1	.05		$m(\tilde{\chi}_1^0)=200$ GeV, bino-like	ATLAS-CONF-2018-003
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$		2 jets + 2 b	,	36.7	$\tilde{t}_1 [qq, bs]$		0.61	T			1710.07171
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$	2 e, μ 1 μ	2 <i>b</i> DV		36.1 136	\tilde{t}_1 \tilde{t}_1 [1e-10< λ'_{22k} <1e-8, 3e-10<			0.4-1.4	5 1.6	$BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$ $BR(\tilde{t}_1 \rightarrow q\mu) = 100\%, \cos\theta_t = 1$	1710.05544 ATLAS-CONF-2019-006

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made. **10**⁻¹


Mass scale [TeV]

1


ATLAS detector


ATLAS and CMS detector

Loopholes? Analysis of electroweak searches by Gambit

Due to little excesses at different places two interpretations:

- Potential model that could result in the excesses,
- Shortcomings of current searches.

Conclusion is that current searches are not sensitive to longer decay chains.

[arXiv:1809.02097]

Likelihood combination of various LEP, ATLAS and CMS searches for electroweakinos:

→ using best possible signal region in case of the multi-bin signal regions in cases where no information on correlations provided, else approximation of full likelihood of search.

$$\begin{array}{l} & - \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0} \mbox{ production, with e.g.} \\ & \tilde{\chi}_{2}^{0} \rightarrow Z + \tilde{\chi}_{1}^{0}, \ \tilde{\chi}_{3}^{0} \rightarrow W^{-} + \tilde{\chi}_{1}^{+} \rightarrow W^{-} + W^{+} + \tilde{\chi}_{1}^{0} \\ & - \tilde{\chi}_{2}^{\pm} \tilde{\chi}_{2}^{\mp} \mbox{ production, with e.g.} \\ & \tilde{\chi}_{2}^{\pm} \rightarrow W^{\pm} + \tilde{\chi}_{2}^{0} \rightarrow W^{\pm} + Z + \tilde{\chi}_{1}^{0} \\ & - \tilde{\chi}_{2}^{\pm} \tilde{\chi}_{3}^{0} \mbox{ production, with e.g.} \\ & \tilde{\chi}_{2}^{\pm} \rightarrow W^{\pm} + \tilde{\chi}_{1}^{0}, \ \tilde{\chi}_{3}^{0} \rightarrow Z + \tilde{\chi}_{2}^{0} \rightarrow Z + Z + \tilde{\chi}_{1}^{0} \\ & - \tilde{\chi}_{2}^{\pm} \tilde{\chi}_{3}^{0} \mbox{ production, with e.g.} \\ & \tilde{\chi}_{2}^{\pm} \rightarrow W^{\pm} + \tilde{\chi}_{2}^{0} \rightarrow W^{\pm} + Z + \tilde{\chi}_{1}^{0}, \\ & \tilde{\chi}_{3}^{0} \rightarrow W^{-} + \tilde{\chi}_{1}^{+} \rightarrow W^{-} + W^{+} + \tilde{\chi}_{1}^{0} \\ & - \tilde{\chi}_{2}^{\pm} \tilde{\chi}_{4}^{0} \mbox{ production, with e.g.} \\ & \tilde{\chi}_{2}^{\pm} \rightarrow W^{\pm} + \tilde{\chi}_{2}^{0} \rightarrow W^{\pm} + Z + \tilde{\chi}_{1}^{0}, \ \tilde{\chi}_{4}^{0} \rightarrow Z + \tilde{\chi}_{1}^{0} \\ & - \tilde{\chi}_{2}^{\pm} \tilde{\chi}_{2}^{0} \mbox{ production, with e.g.} \\ & \tilde{\chi}_{2}^{\pm} \rightarrow H + \tilde{\chi}_{1}^{\pm} \rightarrow h + W^{\pm} + \tilde{\chi}_{1}^{0}, \ \tilde{\chi}_{2}^{0} \rightarrow Z + \tilde{\chi}_{1}^{0} \\ & - \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{3}^{0} \mbox{ production, with e.g.} \\ & \tilde{\chi}_{1}^{\pm} \rightarrow W^{\pm} + \tilde{\chi}_{1}^{0}, \ \tilde{\chi}_{3}^{0} \rightarrow W^{-} + \tilde{\chi}_{1}^{+} \rightarrow W^{+} + W^{-} + \tilde{\chi}_{1}^{0} \\ & - \tilde{\chi}_{2}^{\pm} \tilde{\chi}_{4}^{0} \mbox{ production, with e.g.} \\ & \tilde{\chi}_{1}^{\pm} \rightarrow Z + \tilde{\chi}_{1}^{\pm} \rightarrow Z + W^{\pm} + \tilde{\chi}_{1}^{0}, \ \tilde{\chi}_{4}^{0} \rightarrow h + \tilde{\chi}_{1}^{0} \rightarrow Z + \tilde{\chi}_{1}^{0} \\ & - \tilde{\chi}_{2}^{\pm} \tilde{\chi}_{4}^{0} \mbox{ production, with e.g.} \\ & \tilde{\chi}_{4}^{\pm} \rightarrow h + \tilde{\chi}_{1}^{0} \rightarrow Z + W^{\pm} + \tilde{\chi}_{1}^{0}, \ \tilde{\chi}_{4}^{0} \rightarrow h + \tilde{\chi}_{1}^{0} \rightarrow Z + \tilde{\chi}_{1}^{0} \\ & - \tilde{\chi}_{4}^{0} \mbox{ production, with e.g.} \\ & \tilde{\chi}_{4}^{0} \rightarrow h + \tilde{\chi}_{1}^{0} \rightarrow Z + W^{\pm} + \tilde{\chi}_{1}^{0}, \ \tilde{\chi}_{4}^{0} \rightarrow h + \tilde{\chi}_{1}^{0} \rightarrow Z + W^{\pm} + \tilde{\chi}_{1}^{0}, \ \tilde{\chi}_{4}^{0} \rightarrow h + \tilde{\chi}_{1}^{0} \rightarrow L + \tilde{\chi}_{1}^{0} \\ & - \tilde{\chi}_{4}^{0} \rightarrow h + \tilde{\chi}_{1}^{0} \rightarrow L + W^{\pm} + \tilde{\chi}_{1}^{0} \\ & - \tilde{\chi}_{4}^{0} \rightarrow h + \tilde{\chi}_{1}^{0} \rightarrow L + \tilde{\chi}_{1}^{0} \\ & - \tilde{\chi}_{4}^{0} \rightarrow h + \tilde{\chi}_{1}^{0} \rightarrow L + \tilde{\chi}_{1}^{0} \\ & - \tilde{\chi}_{4}^{0} \rightarrow L + \tilde{\chi}_{1}^{0} \rightarrow L + \tilde{\chi}_{1}^{0} \\ & - \tilde{\chi}_{4}^{0} \rightarrow L + \tilde{\chi}_{1}^{0} \rightarrow L + \tilde{\chi}_{1}^{0} \\ & - \tilde$$