Particle And Proteins: Pathway to Impact

JONATHAN HAYS

QUEEN MARY UNIVERSITY OF LONDON

Searching for a Project: Autumn 2013

- Looking for a new project to complement physics work at the LHC
- Something that could lead to "impact"
- ► Things I've worked on...

Instrumentation

Data Handling

Data Acquisition

Algorithm development

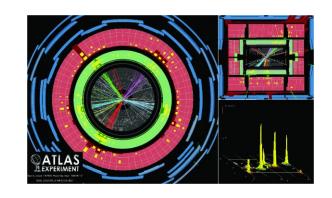
Machine Learning

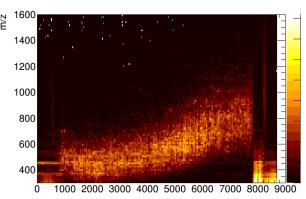
Statistical Analysis

Networking was key!

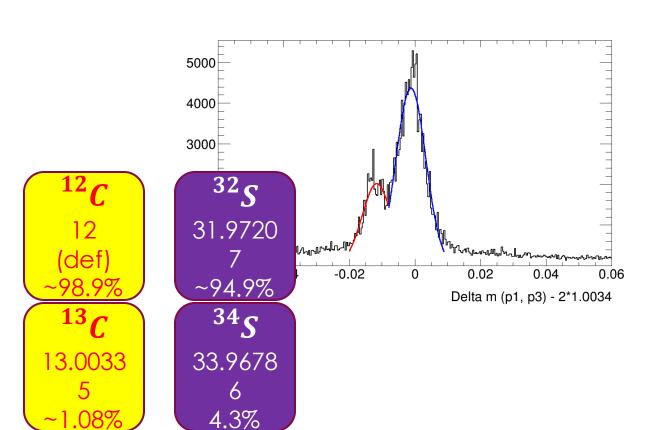
Attended many events, met hundreds of people... no leads :(

Met someone over coffee in Senior Common Room – invited to give seminar to Bioinformaticians – 3 leads

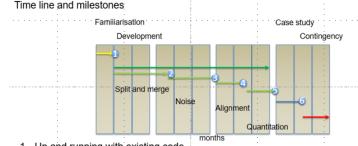

Met someone in a faculty teaching meeting – 1 lead


Looking around at previous "impactful" projects – all based on instrumentation

Particle to Proteins: Summer 2014


- Summer 2014: Summer UG intern
- Autumn 2014: Impact Accelerator Bid successful
 - ▶ £10k to examine distributed computing solutions for proteomics
- Winter 2014: Impact Accelerator Bid successful
 - ▶ £10k to examine new algorithms for analyzing proteomic data

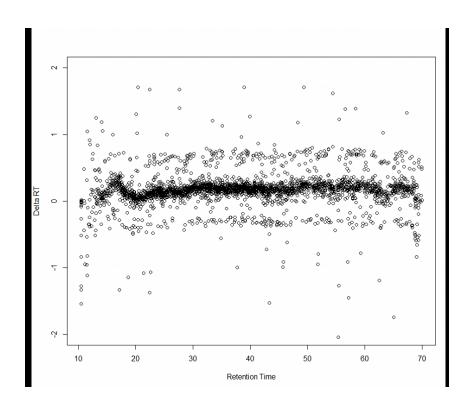
Particle to Proteins: 2014/2015



- UG Projects student 2014/15 working on algorithms
- Working with Post-doc
- ▶ 2015 Impact Accelerator Pump-Prime bid successful £20k
- Demonstrated ability to extract information from the data – FAST!
- Building on this applied for QMUL Life Science Institute PhD studentship with partners across two faculties and three schools

Particles to Proteins: 2015/16

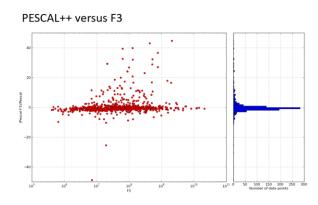
- Using results from Pump-prime activities applied for BBSRC funding – unsuccessful
- Work begins with PhD student to work on new software for protein analysis in Barts Cancer Institute
- Secured £50k from Queen Mary Innovations to produce simple prototype example with benchmarking to develop future partnerships
- ▶ Recruitment problems ⊗
 - Turns out hiring people for short-term contracts is tough


Project Plan & Experimental design

- 1. Up and running with existing code
- Cluster split and merge
- Noise evaluation
- Cross-run alignment
 Simple quantitation using peak integration and workflow integration
- 6. Case study comparative study of performance in real workflow

	Intensity Cut				
Pipeline step	0	1000	2000	3000	4000
Prefiltering and reading data	11	11	12	10	10
Peak Finding	12	7	5	4	3
Clustering Peaks	89	43	17	8	5
2D Geometric Clustering	26	18	11	10	8
Writing outputs	58	40	28	20	16

Particles to Proteins: 2016/17



- Finally succeeded in recruiting a new post-doc
- Work continues, but now more closely with team at Barts
- Looking at more realistic analysis pipelines and trying to produce benchmarking scenarios

Particles to Proteins: 2017/18

- ► Post-doc funding runs out
- PhD student almost complete with PhD work by end Summer 2018
- ► Failed application for CLASP funding ⊗
 - ▶ Too low TRL and poorly aligned with call
- But PhD student now post-doc working on proteomics
- Have successful demonstration of working code
- Need to find commercial partners

Quantitation Performance Comparison

New results – hot off the press – as part of our on-going case study	
Very good agreement in quantitation. Timing acceptable with some caveats.	-

Stage	Time to complete [s]	Cumulative time [s
Running PescalPP	159	159
Filtering data	15	174
Get RT slices	<1	174
Finding peaks	14	188
Finding clusters	13	201
Finding 2D clusters	24	225
Read in peptide IDs	<1	225
Matching IDs and 2D clusters	519	744
Quantitation	<1	744
Filling histograms	29	773

Data sample	No. peptides	% total populates	No. peptides	% total peptio
	Pescal++		F3Pescal++	
1	12500	95.7	12059	92.3
2	12364	94.7	11886	91.0
3	12453	50.4	12049	-270
4	12174	93.2	11704	89.6
5	12066	92.4	11572	88.6
6	12388	94.9	11993	91.8
7	10878	83.3	10213	78.2
8	10892	83.4	10252	78.5
9	11039	84.5	10344	79.2
10	11032	84.5	10320	79.0
11	10848	83.1	10200	78.3
12	10808	82.8	10114	77.5

Improving on this is the primary part of the core development work proposed