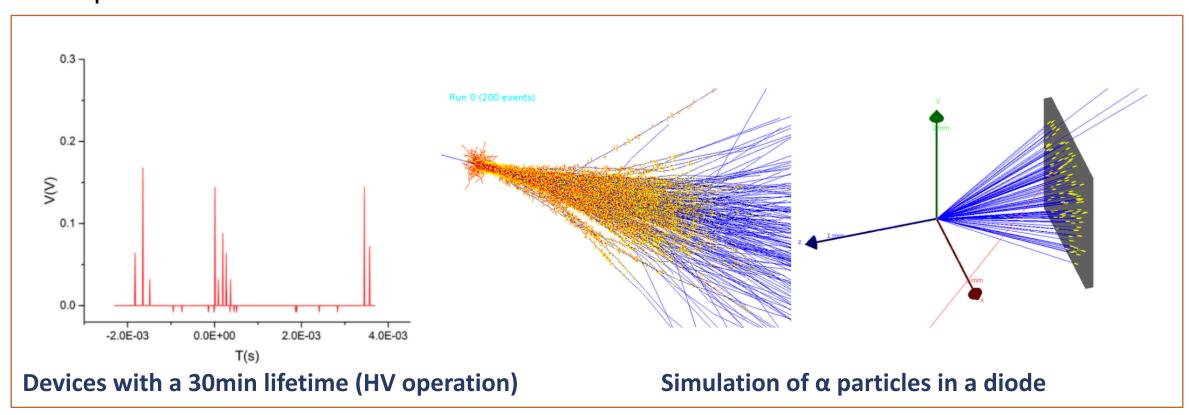
SEM image of a cross section of one of our devices

The Alan Turing Institute

Organic Semiconductor Detectors

Adrian Bevan, Joanna Borowiec, Theo Kreouzis, Cozmin Timis, Tamsin Nooney, Muhammad Ali, Xioaqi Lui, Fani Erini (Frini) Taifakou, Mohit Hassani-Chandershekhar, Samuel Moss 6th November 2019

Science and Technology Facilities Council


Work Funded by STFC, QMUL and the AWE Ltd.

- Q1) What happens if we take an organic semiconductor LED, like those found in OLED TV's and expose them to radiation
- Q2) What if we then adapt those devices to be sensitive to specific types of radiation
- e.g. can we build a new type of neutron detector that could underpin STFC science and be of interest to industry?

Start of a cross-disciplinary collaboration between condensed matter and particle physicists

- PhD student starts working on the project (need raw materials) using diodes
- 10k STFC IAA funding for materials and simulation work to give a crude optimisation of devices

- PhD student starts working on the project (need raw materials) using diodes
- 10k STFC IAA funding for materials and simulation work to give a crude optimisation of devices
- 20k STFC IAA follow on funding to build on promising initial results

LabView driven DAQ prototype, roadmap for technology development, market survey

- PhD student starts working on the project (need raw materials) using diodes
- 10k STFC IAA funding for materials and simulation work to give a crude optimisation of devices
- 20k STFC IAA follow on funding to build on promising initial results
- 179k of funding from AWE to build on that initial investment to make devices to test with high activity neutron sources: academic time, PhD student, travel and consumables

Low Voltage operation of devices validated and UK patent pending. First paper with journal - positive referee responses; checking a few things before finalising.

- QMUL claim device IP.
- AWE IP claim on DAQ and more refined simulation.

- PhD student starts working on the project (need raw materials) using diodes
- 10k STFC IAA funding for materials and simulation work to give a crude optimisation of devices
- 20k STFC IAA follow on funding to build on promising initial results
- 179k of funding from AWE to build on that initial investment to make devices to test with high activity neutron sources: academic time, PhD student, travel and consumables
- 5k of funding from STFC NuSec Network to try out transistors
- 50k of Proof of Concept funding from QMUL to build multi channel devices
- 60k of funding from AWE toward another PhD student

Queen Mary Next steps and outlook

- Technology License Evaluation Agreement with Symetrica
- Testing devices at AWE (leveraging an in-kind contribution of 30k), access to a 450k facility - *this week*
- Pursuing an NDA with 3M for wearable tech and PPE
- Thinking about "products" to pursue IPS/KTP and specifications for organic electronic neutron veto systems for future particle physics experiments
- Aim to spinout technology targeting product development of thermal neutron CVD. diamond detectors with Micron Semiconductor Ltd.
- STFC investment of £30k has leveraged a further £324k (gearing x10)