

Christoph Englert

Di-Higgs phenomenology at the LHC and beyond

Queen Mary University London 23/01/2020

• early Universe: high temperature: symmetry intact ($\phi_{min}=0$)

• Universe expands and cools: $\phi_{\min} \neq 0$ develops, symmetry

- early Universe: high temperature: symmetry intact ($\phi_{min}=0$)
- Universe expands and cools: $\phi_{\min} \neq 0$ develops, symmetry
- Higgs physics fingerprints potential at low temperature

- early Universe: high temperature: symmetry intact ($\phi_{min}=0$)
- Universe expands and cools: $\phi_{\min} \neq 0$ develops, symmetry
- Higgs physics fingerprints potential at low temperature

- early Universe: high temperature: symmetry intact ($\phi_{min}=0$)
- Universe expands and cools: $\phi_{\min} \neq 0$ develops, symmetry
- Higgs physics fingerprints potential at low temperature

- early Universe: high temperature: symmetry intact ($\phi_{min}=0$)
- Universe expands and cools: $\phi_{\min} \neq 0$ develops, symmetry
- Higgs physics fingerprints potential at low temperature

► lack of CP violation, hierarchy,.... Where's the new physics?

di-Higgs physics as a probe of (B)SM physics

Can multi-Higgs phenomenology pinpoint BSM solutions?

Why have we not seen them yet?

What can be learned at 3/ab?

What about beyond the LHC?

Can multi-Higgs phenomenology pinpoint BSM solutions?

Why have we not seen them yet?

What can be learned at 3/ab?

What about beyond the LHC?

In this talk:

- 1. precision of Higgs self-coupling extraction
- 2. relevance of di-Higgs final states of exotics searches
- 3. sensitivity to weakly-coupled BSM, di-Higgs as a case for FCC-hh

Electroweak symmetry breaking relies on self-interactions in the Higgs potential.

Higgs couplings Tokyo `12

rare final states = large statistics

CMS Phase-2 3000 fb⁻¹ (14 TeV) σ (gg→HH) [fb] 10⁴ Simulation Preliminary Assumes no HH signal 95% CL upper limits - Median expected -- bbbb $-b\overline{b}\tau\tau$ $- b\overline{b}VV(lvlv) - b\overline{b}\gamma\gamma$ $-b\overline{b}ZZ^{*}(4I)$ -Combination 10³ Theoretical prediction 10² 2 -2 8 0 6 10 Higgs self-coupling/SM expectation

we are in the domain of large (end-of-lifetime) LHC luminosity

 $\kappa_{\lambda} = [-0.18, 3.6]$

...only a factor 2 away from perturbative unitarity constraints...

LHC blind spot!

- sensitivity from small invariant mass: sensitive phase space in inclusive di-Higgs production is vastly limited
- open up the phase space by accessing small invariant masses in a collinear configuration

[Dolan, CE, Spannowsky `12]

- sensitivity from small invariant mass: sensitive phase space in inclusive di-Higgs production is vastly limited
- open up the phase space by accessing small invariant masses in a collinear configuration

[Dolan, CE, Spannowsky `12]

- sensitivity from small invariant mass: sensitive phase space in inclusive di-Higgs production is vastly limited
- open up the phase space by accessing small invariant masses in a collinear configuration
 [Dolan, CE, Spannowsky `12]
- exploit this at FCC-hh: 8% accuracy on κ_{λ} in $b\bar{b}\tau\tau + j$ alone!

[Banerjee, CE, Mangano, Selvaggi, Spannowsky `12]

process	precision on σ_{SM}	68% CL interval on Higgs self-couplings	R
$HH ightarrow b\overline{b}\gamma\gamma$	3%	$\lambda_3 \in [0.97, 1.03]$	C.
$HH ightarrow b \overline{b} b \overline{b}$	5%	$\lambda_3 \in [0.9, 1.5]$ $\mathcal{O}(\pm 3)$	%)
$HH ightarrow b\overline{b}4\ell$	O(25%)	$\lambda_3 \in [0.6, 1.4]$	
$HH \to b \bar{b} \ell^+ \ell^-$	O(15%)	$\lambda_3 \in [0.8, 1.2]$	
$HH ightarrow b \overline{b} \ell^+ \ell^- \gamma$	_	_	
$HHH ightarrow bar{b}bar{b}\gamma\gamma$	O(100%)	$\lambda_4 \in [-4,+16]$	[Contino et al. CERN YR `16]
		20	

 easy to arrange ad-hoc EFT in a way to get spectacular rates, but casts doubt physical relevance of such limits (→ matching)

 ▶ easy to arrange ad-hoc EFT in a way to get spectacular rates, but casts doubt physical relevance of such limits (→ matching)

[Basler, Dawson, CE, Mühlleitner `18]

- use concrete Higgs sector extensions (C2HDM/CxSM/...)
 - extrapolate 125 GeV signal strengths
 - extrapolate exotic Higgs searches

What's left for di-Higgs?

• more constraints (*electron EDMs, flavor, perturbativity, strong PS, CP viol.*)

SM-like measurements can show a plethora resonant anomalies diHiggs final states important for BSM discovery

special role of tops

large interference effects of Higgs "signal" with QCD background

[Gaemers, Hoogeveen `84] [Dicus et al. `94]....

special role of tops

large interference effects of Higgs "signal" with QCD background

[Gaemers, Hoogeveen `84] [Dicus et al. `94]....

 top resonance searches in Higgs sector extensions with narrow width approximation is inadequate!

special role of tops

 destructive interference in top final states can be concellated with excess in HH - how?

g

g

• weakly coupled BSM: the \mathbb{Z}_2 -symmetric Higgs portal

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} (\partial_{\mu} S)^2 - \frac{m_S^2}{2} S^2 - \lambda S^2 (\Phi^{\dagger} \Phi - v^2/2)$$

- for $m_S > m_H/2$ no direct SM Higgs decays
- Higgs physics modifications via loop- or kinematics-suppressed effects

• weakly coupled BSM: the \mathbb{Z}_2 -symmetric Higgs portal

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} (\partial_{\mu} S)^2 - \frac{m_S^2}{2} S^2 - \lambda S^2 (\Phi^{\dagger} \Phi - v^2/2)$$

- for $m_S > m_H/2$ no direct SM Higgs decays
- Higgs physics modifications via loop- or kinematics-suppressed effects

weakly coupled BSM diHiggs @ LHC 2 diHiggs @ FCC-hh 1 [Contino et al. `17] FCC-hh off-shell **Coleman-Weinberg** λ 0 approximation for lepton colliders diHiggs -1 electroweak -2 150 300 potential unstable 100 250 200

 m_S [GeV]

[CE, Jaeckel `19]

[Curtin, Meade. Yu`14]

- weakly coupled BSM: the \mathbb{Z}_2 -symmetric Higgs portal $\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2}(\partial_\mu S)^2 - \frac{m_S^2}{2}S^2 - \lambda S^2(\Phi^{\dagger}\Phi - v^2/2)$
- high-precision physics on the Z pole (e.g. GigaZ)
- universal changes to four-fermion processes through loop contributions

[Peskin, Takeuchi`90]...

- weakly coupled BSM: the \mathbb{Z}_2 -symmetric Higgs portal $\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2}(\partial_\mu S)^2 - \frac{m_S^2}{2}S^2 - \lambda S^2(\Phi^{\dagger}\Phi - v^2/2)$
- high-precision physics on the Z pole (e.g. GigaZ)

• weakly coupled BSM: the \mathbb{Z}_2 -symmetric Higgs portal

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} (\partial_{\mu} S)^2 - \frac{m_S^2}{2} S^2 - \lambda S^2 (\Phi^{\dagger} \Phi - v^2/2)$$

 $\sqrt{s} = 400 \text{ GeV}$

1000

why is di-Higgs the driving force here?

Combination of

- changed threshold behavior (cf. self-coupling)
- double sensitivity of Higgs coupling modification in the tail compared to single Higgs

- Higgs physics sits at the heart of our BSM efforts
 - enhancing theoretical predictions
 - Imit setting tailored to minimise systematics polutions

- multi-Higgs physics sits at the heart of our BSM efforts
 - enhancing theoretical predictions
 - Imit setting tailored to minimise systematics polutions
- Opportunity to link the Higgs sector to new physics
 - cure SM shortcomings (CP violation...)
 - multi-Higgs is a hard case for BSM sensitivity
 - new collider concepts can maximise precision vs energy reach in complementary ways