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We know a lot 
about them!

But there’s still quite a 
few open questions…

They’re 
important!
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𝜑Expected variation in the solar 
neutrino flux depends on: 

Spherical symmetry: 1/r2

SK-I: 1996 - 2001 

SK-II: 2002 - 2005 

SK-III: 2006 - 2008 

SK-IV: 2008 - 2019

In phase

Out of phase
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The two methods now verify each 
other and function as a cross-check.

SK-III reanalysis in 
progress.

Possible applications to future direct dark matter experiments.
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using RG running (REAP) 
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where Nd.o.f. is the number of degrees of freedom - the number of observables minus the
number of parameters in our analysis (⌘3 here). A model is said to be a good fit to
data if �2

⌫ ' 1 and any model that deviates significantly from this is said to be a poor
fit. In Table 1 it can be seen that the distributions for some experimentally measured
observables are asymmetric; hence, to keep the analysis clean and simple, we approximate
the �

2 for each parameter point in the following manner:

To be conservative, we approximate that the observables conform to a symmetric Gaus-
sian distribution, where the central value are those given in the table and we use the
smaller of the quoted uncertainties in our calculations for all constraints except ✓23 and
�. For these two observables, we approximate the distribution as Gaussian with its central
value located in the middle of the quoted 1� range from Table 1. Thus, the modifications
from the true experimental values stated in the table are as follows: ✓23 = 46.35�+2.75�

�2.75� ,
� = 120�+37�

�37� .

In this way, the 1� range is preserved and we do not vastly overestimate the �
2 contri-

butions from these observables relative to the rest. However, it is important to note that
this method will always underestimate the �

2 slightly.

The general method used to test each parameter point is outlined in Figure 1. We scan
over the four input parameters with a predefined step for each one, with ranges initially
informed by previous analysis of the LS [44]. A four-dimensional grid is created, and
at each point of this grid - corresponding to a particular combination of parameters -
the values for each parameter are inserted into the relevant matrices to define a single
parameter point at the GUT scale.

Parameters

Matrices

RG Running:
REAP [45]

Predictions �
2

Overarching Grid Scan

Figure 1: Parameter scan and data flow for a single point. �2
denotes calculation of the

goodness-of-fit test against experimental data.
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and  a, b : free parameters in Yukawa matrices
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at each point of this grid - corresponding to a particular combination of parameters -
the values for each parameter are inserted into the relevant matrices to define a single
parameter point at the GUT scale.

Parameters

Matrices

RG Running:
REAP [45]

Predictions �
2

Overarching Grid Scan

Figure 1: Parameter scan and data flow for a single point. �2
denotes calculation of the

goodness-of-fit test against experimental data.
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Case A Case D
Matm / GeV 5.05 x 1010 1.36 x 1013

Msol / GeV 5.07 x 1013 1.06 x 1010

a 0.00806 0.135
b 0.0830 0.00116

χ2 / d.o.f. 1.75 / 3 2.07 / 3

 LS highly predictive: 7 
observables from 4 parameters 

 Excellent fit; suggests δ ≃ −90°; 
allows indirect prediction of RHν 
masses 

 Withstands future test based on 
T2HK and DUNE sensitivity
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We are living in a precision 
measurement era! 
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