

Precision-Era Neutrino Studies at Super-K and Hyper-K

Susana Molina Sedgwick

Supervisors: Francesca Di Lodovico, Stephen F. King

Queen Mary

Precision-Era Neutrino Studies at Super-K and Hyper-K

Susana Molina Sedgwick

Supervisors: Francesca Di Lodovico, Stephen F. King

PPRC SEMINAR

SK solar analysis

2

PPRC SEMINAR

SK solar analysis

Matter effects at HK

PPRC SEMINAR

SK solar analysis

Matter effects at HK

Littlest Seesaw

PPRC SEMINAR

SK solar analysis

Matter effects at HK

Littlest Seesaw

We know a lot about them!

We know a lot about them!

PPRC SEMINAR

We know a lot about them!

They're important!

PPRC SEMINAR

••

•

 $\left[\right]$

 \mathcal{D}_{i}

•

•

We know a lot about them!

They're important!

But there's still quite a few open questions...

PPRC SEMINAR

Neutrino mixing matrix:

$$v_{\alpha} = \sum_{i=1}^{3} U_{ai} v_i$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

PPRC SEMINAR

Neutrino mixing matrix:

$$v_{\alpha} = \sum_{i=1}^{3} U_{ai} v_i$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- Three mixing angles:
 - $\overline{\theta_{12}}, \overline{\theta_{13}}, \overline{\theta_{23}}$
- 1 Dirac CP phase
- 3 masses (2 possible orderings)

PPRC SEMINAR

Neutrino mixing matrix:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-1} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix}$$

$$v_{\alpha} = \sum_{i=1}^{3} U_{ai} v_i$$

$$\begin{pmatrix} c_{12} & s_{12} & 0 \\ 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- Three mixing angles: $\theta_{12}, \theta_{13}, \theta_{23}$
- 1 Dirac CP phase
- 3 masses (2 possible orderings)

PPRC SEMINAR

- Tank made of stainless steel
- ~ 50,000 tons of ultra pure water
- ~ 13,000 Photo-Multiplier
 Tubes (PMTs)

- Tank made of stainless steel
- ~ 50,000 tons of ultra pure water
- ~ 13,000 Photo-Multiplier
 Tubes (PMTs)

- Tank made of stainless steel
- ~ 50,000 tons of ultra pure water
- ~ 13,000 Photo-Multiplier
 Tubes (PMTs)

- Tank made of stainless steel
- ~ 50,000 tons of ultra pure water
- ~ 13,000 Photo-Multiplier
 Tubes (PMTs)

- Tank made of stainless steel
- ~ 50,000 tons of ultra pure water
- ~ 13,000 Photo-Multiplier
 Tubes (PMTs)

- Tank made of stainless steel
- ~ 50,000 tons of ultra pure water
- ~ 13,000 Photo-Multiplier
 Tubes (PMTs)

- Tank made of stainless steel
- ~ 50,000 tons of ultra pure water
- ~ 13,000 Photo-Multiplier
 Tubes (PMTs)

- Tank made of stainless steel
- ~ 50,000 tons of ultra pure water
- ~ 13,000 Photo-Multiplier
 Tubes (PMTs)

- Tank made of stainless steel
- ~ 50,000 tons of ultra pure water
- ~ 13,000 Photo-Multiplier
 Tubes (PMTs)

SUPER KAMIOKANDE

- Tank made of stainless steel
- ~ 50,000 tons of ultra pure water
- ~ 13,000 Photo-Multiplier Tubes (PMTs)

A NEUTRINO BEAM

- Tank made of stainless steel
- ~ 50,000 tons of ultra pure water
- ~ 13,000 Photo-Multiplier Tubes (PMTs)

SEASONAL VARIATION

7

SEASONAL VARIATION

Expected variation in the solar neutrino flux depends on:

Spherical symmetry: 1/r²

SEASONAL VARIATION

Expected variation in the solar neutrino flux depends on:

Spherical symmetry: 1/r²

MSW effect

SEASONAL VARIATION

Expected variation in the solar neutrino flux depends on:

Spherical symmetry: 1/r²

MSW effect

9

9

PPRC SEMINAR

 The two methods now verify each other and function as a cross-check.

PPRC Seminar

- The two methods now verify each other and function as a cross-check.
- SK-III reanalysis in progress.

- The two methods now verify each other and function as a cross-check.
- SK-III reanalysis in progress.
- Possible applications to future direct dark matter experiments.

PPRC SEMINAR

- 10x larger than Super-K
- Upgraded near + intermediate detector
- Multipurpose: huge research potential

PPRC SEMINAR

- 10x larger than Super-K
- Upgraded near + intermediate detector
- Multipurpose: huge research potential

PPRC SEMINAR

- 10x larger than Super-K
- Upgraded near + intermediate detector
- Multipurpose: huge research potential

HYPER-K KOREA

PPRC SEMINAR

HYPER-K KOREA

 1000 km

 1050 km

 5 baselines

 1100 km

 1150 km

 1200 km

13

HYPER-K KOREA

<u>Hyper-K Korea</u>

1000 km 1050 km 5 baselines - 1100 km 1150 km 1200 km

Mt. Bisul ←

LITTLEST SEESAW: SM extension with 2 new RHv singlets

LITTLEST SEESAW: SM extension with 2 new RHv singlets

LITTLEST SEESAW: SM extension with 2 new RHv singlets

- Renormalisation Group Evolution: Evolve observables to low scales using RG running (REAP)
- Leptogenesis:
 Lepton asymmetry generated through decay of lightest RHv

LITTLEST SEESAW: SM extension with 2 new RHv singlets

- Renormalisation Group Evolution: Evolve observables to low scales using RG running (REAP)
- Leptogenesis:
 Lepton asymmetry generated through decay of lightest RHv

$$Y_{\Delta \alpha} = \eta_{\alpha} \epsilon_{\alpha} Y_{N1}^{eq} \quad = \quad$$

$$Y_B = \frac{12}{37} \sum_{\alpha = e, \mu, \tau} Y_{\Delta \alpha}$$

2 cases: A, D
$$\Longrightarrow$$
 $Y_{\nu}^{A} = \begin{pmatrix} 0 & be^{i\eta/2} \\ a & nbe^{i\eta/2} \\ a & (n-2)be^{i\eta/2} \end{pmatrix}$, $M_{R}^{A} = \begin{pmatrix} M_{atm} & 0 \\ 0 & M_{sol} \end{pmatrix}$

PPRC SEMINAR

2 cases: A, D
$$\Longrightarrow$$
 $Y_{\nu}^{A} = \begin{pmatrix} 0 & be^{i\eta/2} \\ a & nbe^{i\eta/2} \\ a & (n-2)be^{i\eta/2} \end{pmatrix}$, $M_{R}^{A} = \begin{pmatrix} M_{atm} & 0 \\ 0 & M_{sol} \end{pmatrix}$

<u>Method:</u> Fit high scale parameters to low scale neutrino data and BAU from Leptogenesis (x² analysis)

PPRC SEMINAR

2 cases: A, D \Longrightarrow $Y_{\nu}^{A} = \begin{pmatrix} 0 & be^{i\eta/2} \\ a & nbe^{i\eta/2} \\ a & (n-2)be^{i\eta/2} \end{pmatrix}$, $M_{R}^{A} = \begin{pmatrix} M_{atm} & 0 \\ 0 & M_{sol} \end{pmatrix}$

<u>Method:</u> Fit high scale parameters to low scale neutrino data and BAU from Leptogenesis (χ^2 analysis)

Scan over neutrino masses:

$$\begin{split} 1.0 \times 10^9 &\leq M_1 \leq 5.0 \times 10^{12} \quad \text{[GeV]} \\ 5M_1 &\leq M_2 \leq 1.0 \times 10^{16} \quad \text{[GeV]} \end{split}$$

PPRC SEMINAR

2 cases: A, D
$$\Longrightarrow$$
 $Y_{\nu}^{A} = \begin{pmatrix} 0 & be^{i\eta/2} \\ a & nbe^{i\eta/2} \\ a & (n-2)be^{i\eta/2} \end{pmatrix}$, $M_{R}^{A} = \begin{pmatrix} M_{atm} & 0 \\ 0 & M_{sol} \end{pmatrix}$

<u>Method:</u> Fit high scale parameters to low scale neutrino data and BAU from Leptogenesis (χ^2 analysis)

Scan over neutrino masses:

 $\begin{array}{ll} 1.0 \times 10^9 \leq M_1 \leq 5.0 \times 10^{12} & \mbox{[GeV]} \\ 5M_1 \leq M_2 \leq 1.0 \times 10^{16} & \mbox{[GeV]} \end{array}$

n = 3 $\eta = \pm 2\pi/3$ $\eta = \pm 2\pi/3$ $\eta = \pm 2\pi/3$

PPRC SEMINAR

(Case A)

8.40

8.50

> LS highly predictive: 7 observables from 4 parameters

> Excellent fit; suggests $\delta \simeq -90^{\circ}$; allows indirect prediction of RHvmasses

> Withstands future test based on T2HK and DUNE sensitivity

	Case A	Case D
M _{atm} / GeV	5.05 x 10 ¹⁰	1.36 x 10 ¹³
M _{sol} / GeV	5.07 x 10 ¹³	1.06 x 10 ¹⁰
а	0.00806	0.135
b	0.0830	0.00116
χ ² / d.o.f.	1.75/3	2.07/3

> LS highly predictive: 7 observables from 4 parameters

> Excellent fit; suggests $\delta \approx -90^{\circ}$; allows indirect prediction of RHvmasses

> Withstands future test based on T2HK and DUNE sensitivity

	Case A	Case D
M _{atm} / GeV	5.05 x 10 ¹⁰	1.36 x 10 ¹³
M _{sol} / GeV	5.07 x 10 ¹³	1.06 x 10 ¹⁰
а	0.00806	0.135
b	0.0830	0.00116
χ ² / d.o.f.	1.75/3	2.07/3

We are living in a precision measurement era!

We are living in a precision measurement era!

THANK YOU

We are living in a precision measurement era!

THANK YOU

