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PS MCs take hard scattering events generated according to fixed order pQCD 
characterised by mom. transfers in the 100’s to 1000’s of GeV  
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down to the scale where hadrons form O(1) GeV they dress them with increasingly soft, real & virtual, resummed radiative corrns, 
accounting for the structure of events at ever smaller scales  

Parton Shower Event Generators
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H

They take us from this level of theoretical description  

Parton Shower Event Generators



to this ...



Incisive new theory c. 2004 ̶ AMC@NLO and POWHEG ̶ showed how to fuse 
PSMC consistently with NLO perturbation theory, in generality and in practice 

NLO + Parton Shower Event Generators

H

MC@NLO: Frixione, Webber                                 POWHEG: Alioli, Nason, Oleari, Re



NLO+PS codes for basically all SM processes of interest can be freely obtained 
from a number of teams : HERWIG, AMC@NLO, SHERPA, POWHEG-BOX 

NLO + Parton Shower Event Generators
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Does it matter, e.g. for Higgs?

% of ATLAS+CMS+LHCb papers citing an article/group in Jan ’14 ➞ Oct ‘19

PS / NLO+PS MC ubiquitous in Higgs analysis

w.o. self-citations

PYTHIA features prominently in 93% of papers, POWHEG 83%, AMC@NLO 66%

 > 200 published articles
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PS MC is a central, everyday, part of the LHC physics programme

In simulating arbitrary numbers of real/virtual, soft/collinear, emissions PS MCs      

are `the ultimate’ resummation tools : they give you predns for any observable

w.o. self-citations

Does it matter for anything else?

 ~ 1700 published articles



dipole parton shower in 2 mins

https://link.springer.com/article/10.1007/JHEP09(2018)033


Events are viewed throughout as a collection of colour-anticolour dipole ends, 
starting already at the level of the hard scattering

Z

q

q
_

gluon has two dipole ends, colour & anti-colour 

quark has one colour dipole end 

antiquark has one anti-colour dipole end

dipole shower in 2 mins



Events are viewed at resolution scale v : typically the min p⟂ sepn of any two partons 

Zooming-out from large v to small v more partons get resolved with smaller p⟂ sepns
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q

q
_

v0

v = v0 = mZ

Changing resolution like this is referred to as evolution in shower time [i.e. v] 

dipole shower in 2 mins



P[q dipole end doesn’t emit in v0 ➞ v1]

Probability to evolve [zoom-out] from resolution scale v0 to some smaller scale v1 
without resolving anything new along the way is called the Sudakov form factor 

It’s the product of probabilities for no resolvable emission from each dipole end   
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1
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dipole shower in 2 mins



The first emission is distributed according to the probability neither side of the dipole 
emits and then either the colour end or the anti-colour end emits 
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dPĩj̃!ikj =
↵SC

2⇡
dp2? d⌘

p̃i.p̃j
p̃i.pk p̃j .pk
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dPĩ[j̃]!ik[j] = dPĩ[j̃]!ik[j]
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Given an emission from a dipole i j, i.e. given a phase space point, the probability it 
comes the i side is                   , and analogously for the j side  
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dPĩj̃!ikj =
↵SC

2⇡
dp2? d⌘

p̃i.p̃j
p̃i.pk p̃j .pk
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dipole shower in 2 mins



The total momentum in the event is conserved before and after the emission 

Other particles need to recoil to balance emission k  

E.g. in PYTHIA & DIRE emitter, i, takes the transverse recoil of k in the i j C.O.M frame
~~

j
~

j i
~

k

i

~
Residual dipole longitudinal momentum imbalance absorbed by rescaling j ➞ j

dipole shower in 2 mins

[spectator]
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Repeat the same exercise using the two new dipoles ... 

dipole shower in 2 mins
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dipole shower in 2 mins

Evolve without resolving anything ... 

10 GeV 1 GeV100 GeV



Branch. Construct post-branching kinematics. 
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dipole shower in 2 mins
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And repeat ... 

dipole shower in 2 mins
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And repeat ... 
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dipole shower in 2 mins
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dipole shower in 2 mins

And repeat ... 

10 GeV 1 GeV100 GeV
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dipole shower in 2 mins

Then hadronize for v < vmin

10 GeV 1 GeV100 GeV

vmin



parton shower accuracy

https://link.springer.com/article/10.1007/JHEP09(2018)033


parton shower accuracy

PS MC accuracy not clearly defined; often conflated with ability to describe data 

PS MCs use ab initio QCD to simulate multiple-emissions across disparate scales 

This work: 

a) Define PS MC accuracy as ability to reproduce pQCD results for             
multiple-emissions across disparate scales ... 

i.    singular structure of multiple parton MEs 

ii.   logarithmic resummation results 

b) Establish general design principles for PS MCs to reach NLL accuracy 

c) Demonstrate with full-fledged concrete examples



leading and next-to-leading log

https://link.springer.com/article/10.1007/JHEP09(2018)033


single emission

Given a FS colour dipole end, i, connected to an anti-colour dipole end, j ~ ~

the probability to emit a soft gluon into phase space element at p⟂,ηdip,φ is 

Emission specified by three phase space vars, e.g. p⟂,ηdip, two of which are logarithmic

Single log: integrate over either ln p⟂ /ηdip           [more generally over a line in ln p⟂ -ηdip     ]
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dPĩ[j̃]!ik[j]

�

� (v0, v1) =
Y

dipole
ends ĩ
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Double log: integrate over both ln p⟂ & ηdip     [more generally over an area in ln p⟂ -ηdip ]

Can reparametrise, e.g. p⟂ ➞ Ek ~ ½ p⟂e|η|, but story above is the same



Summing & integrating over MEs correctly describing 
multiple emissions strongly ordered in energy and 
angle resums, in general, leading logs 

              p⟂,i+1 ⪡ p⟂,i      with      |η,i |⪡|η,i+1| 

ln p⟂

|ηdip |

leading logs : strongly ordered emissions in both logarithmic variables
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⟂
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p ⟂
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Summing & integrating over MEs further describing 
multiple emissions strongly ordered in just one log 
variable is needed to resum next-to-leading log terms 

E.g. strongly ordered energies at commensurate angles 

                       E,i+1 ⪡ E,i         |η,i| ~ |η,i+1|

ln p⟂

|ηdip |

leading logs : strongly ordered emissions in one logarithmic variable

E,
2 
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,1
E ,

3 
⪡
 E

,2
E ,

5 
⪡
 E

,4
E ,

4 
⪡
 E

,3



Summing & integrating over MEs further describing 
multiple emissions strongly ordered in just one log 
variable is needed to resum next-to-leading log terms 

E.g. strongly ordered angles & commensurate p⟂’s 

                    |η,i| ⪡ |η,i+1|         p⟂,i ~ p⟂,i+1

ln p⟂

|ηdip |

leading logs : strongly ordered emissions in one logarithmic variable

|η,1 | ⪡  |η,2| ⪡  |η,3| ⪡  |η,4|



NLL building blocks

https://link.springer.com/article/10.1007/JHEP09(2018)033


Evaluating αS at p⟂ in the CMW scheme accounts for secondary emissions  [inclusively]

NLL building blocks : ME for strong angular ordered [A.O.]

NLL for global observables only requires correctly accounting for configns with strong A.O.

Holds for strong A.O. even if emissions have p⟂,i ~ p⟂,i+1           [PS recoil better respect this]

dPn ' Cn
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nY

i=1
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s (p2?,i)

⇡

dp?,i

p?,i
dziPq!qg(zi)

d�i

2⇡

!

Widest angle gluon is blind to smaller angle ones: thinks it was emitted from original qq dipole 

X-secn factorises into wide angle gluon from original dipole x that for the n-1 particle process 

Reasoning iterates on the resulting n-1, n-2, ... x-secns on the same basis 

I.e. probability for n emissions widely separated in angle is just n lots of the one-emission prob:

q
Z

q
_

g1

g2g3

g4

_



dPqq ∝ q.g1 q.g1

q.q_
_
_

NLL building blocks : ME for strong energy ordering

q

Z

q
_

Non-global observables involve non-trivial partitions in phase space, e.g. jet-cone  

Resummation requires correct handling of emissions commensurate in angle, ordered in energy 

E,i+1 ⪡ E,i implies eikonal approximation 

In the large-Nc limit dipoles don’t talk to each other [all charged differently] 

Ratio of n+1- to n-particle MEs for a given colour confign is sum of MEs for each dipole to emit



q

Z

q
_

NLL building blocks : ME for strong energy ordering

Non-global observables involve non-trivial partitions in phase space, e.g. jet-cone  

Resummation requires correct handling of emissions commensurate in angle, ordered in energy 

E,i+1 ⪡ E,i implies eikonal approximation 

In the large-Nc limit dipoles don’t talk to each other [all charged differently] 

Ratio of n+1- to n-particle MEs for a given colour confign is sum of MEs for each dipole to emit

dP1q ∝ g1.g2 q.g2

g1.qdPq1 ∝ q.g2 g1.g2

q.g1
_

__



NLL building blocks : ME for strong energy ordering

q

Z

q
_

Non-global observables involve non-trivial partitions in phase space, e.g. jet-cone  

Resummation requires correct handling of emissions commensurate in angle, ordered in energy 

E,i+1 ⪡ E,i implies eikonal approximation 

In the large-Nc limit dipoles don’t talk to each other [all charged differently] 

Ratio of n+1- to n-particle MEs for a given colour confign is sum of MEs for each dipole to emit

dP1q ∝ g1.g3 q.g3

g1.qdP21 ∝ g1.g3 g2.g3

g1.g2dPq2 ∝ q.g3 g2.g3

q.g2
_

__



NLL building blocks : ME for strong energy ordering

q

Z

q
_

Non-global observables involve non-trivial partitions in phase space, e.g. jet-cone  

Resummation requires correct handling of emissions commensurate in angle, ordered in energy 

E,i+1 ⪡ E,i implies eikonal approximation 

In the large-Nc limit dipoles don’t talk to each other [all charged differently] 

Ratio of n+1- to n-particle MEs for a given colour confign is sum of MEs for each dipole to emit

dP3q ∝ g3.g4 q.g4

g3.qdP21 ∝ g1.g4 g2.g4

g1.g2

dP13 ∝ g1.g4 g3.g4

g1.g3

dPq2 ∝ q.g4 g2.g4

q.g2
_
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NLL building blocks : ME for strong energy ordering

q

Z

q
_

Non-global observables involve non-trivial partitions in phase space, e.g. jet-cone  

Resummation requires correct handling of emissions commensurate in angle, ordered in energy 

E,i+1 ⪡ E,i implies eikonal approximation 

In the large-Nc limit dipoles don’t talk to each other [all charged differently] 

Ratio of n+1- to n-particle MEs for a given colour confign is sum of MEs for each dipole to emit

dP4q ∝ g4.g5 q.g5

g4.qdP21 ∝ g1.g5 g2.g5

g1.g2

dP13 ∝ g1.g5 g3.g5

g1.g3

dP34 ∝ g3.g5 g4.g5

g3.g4dPq2 ∝ q.g5 g2.g5

q.g2
_

__



NLL building blocks : ME for strong energy ordering

q

Z

q
_

Non-global observables involve non-trivial partitions in phase space, e.g. jet-cone  

Resummation requires correct handling of emissions commensurate in angle, ordered in energy 

E,i+1 ⪡ E,i implies eikonal approximation 

In the large-Nc limit dipoles don’t talk to each other [all charged differently] 

Ratio of n+1- to n-particle MEs for a given colour confign is sum of MEs for each dipole to emit

dP21 dPq5 _

dP13 

dP34 dP4q 

dP52 



NLL building blocks : ME for strong energy ordering

q

Z

q
_

Non-global observables involve non-trivial partitions in phase space, e.g. jet-cone  

Resummation requires correct handling of emissions commensurate in angle, ordered in energy 

E,i+1 ⪡ E,i implies eikonal approximation 

In the large-Nc limit dipoles don’t talk to each other [all charged differently] 

Ratio of n+1- to n-particle MEs for a given colour confign is sum of MEs for each dipole to emit

dP26 dPq5 _

dP13 

dP34 dP4q 

dP52 

dP61 



NLL building blocks : ME for strong energy ordering

q

Z

q
_

Non-global observables involve non-trivial partitions in phase space, e.g. jet-cone  

Resummation requires correct handling of emissions commensurate in angle, ordered in energy 

E,i+1 ⪡ E,i implies eikonal approximation 

In the large-Nc limit dipoles don’t talk to each other [all charged differently] 

Ratio of n+1- to n-particle MEs for a given colour confign is sum of MEs for each dipole to emit

dP26 dPq5 _

dP13 

dP37 dP4q 

dP52 

dP61 
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NLL building blocks : ME for strong energy ordering

q

Z

q
_

Non-global observables involve non-trivial partitions in phase space, e.g. jet-cone 

Resummation requires correct handling of emissions commensurate in angle, ordered in energy 

E,i+1 ⪡ E,i implies eikonal approximation 

In the large-Nc limit dipoles don’t talk to each other [all charged differently] 

Ratio of n+1- to n-particle MEs for a given colour confign is sum of MEs for each dipole to emit

dP26 dPq5 _

dP13 

dP37 dP8q 

dP52 

dP61 

dP74 

dP48 
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NLL building blocks : ME for strong energy ordering

Non-global observables involve non-trivial partitions in phase space, e.g. jet-cone  

Resummation requires correct handling of emissions commensurate in angle, ordered in energy 

E,i+1 ⪡ E,i implies eikonal approximation 

In the large-Nc limit dipoles don’t talk to each other [all charged differently] 

Ratio of n+1- to n-particle MEs for a given colour confign is sum of MEs for each dipole to emit
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NLL building blocks : ME for strong energy ordering

q

Z

q
_

Non-global observables involve non-trivial partitions in phase space, e.g. jet-cone  

Resummation requires correct handling of emissions commensurate in angle, ordered in energy 

E,i+1 ⪡ E,i implies eikonal approximation 

In the large-Nc limit dipoles don’t talk to each other [all charged differently] 

Ratio of n+1- to n-particle MEs for a given colour confign is sum of MEs for each dipole to emit

dP26 dPq9 _

dP13 

dP310 dP8q 

dP52 

dP61 

dP74 

dP48 dP95 
dP107 



existing parton showers

https://link.springer.com/article/10.1007/JHEP09(2018)033


It was clear since the first days of NGLs angular ordering, on its own, won’t resum them  

Banfi, Corcella, Dasgupta ’06 studied this for HERWIG, showing discrepancies with LL NGL calcns

Showers built out of the strong angular ordering picture [A.O.]
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Only the HERWIG/HERWIG++ PS MCs take strong A.O. as their core construction principle     

[feeding into NLO+PS tools producing hard scattering configurations in need of showering]



Foundations to start building the next generation of precision PS MC from? 

No. Turns out they fundamentally don’t reproduce the A.O. limit ̶ arXiv:1805.09327
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PYTHIA, DIRE, SHERPA have the dipole multiplication model as their core construction principle† 

They additionally match the soft dipole fns to AP splitting fns to describe hard-collinear radn ...

†       ARIADNE [long long ago] was the first PSMC based on the dipole picture  [Gustafson, Lönnblad & others]

Showers built out of the dipole picture 



current dipole PS MCs & QCD coherence



i end accounts for full dipole branching probability in limit i ‖ k [η ➞ +∞] 

j end accounts for full dipole branching probability in limit j ‖ k [η ➞ -∞] 

On-the-market dipole PSMCs split eikonal fns up symmetrically in the dipole C.O.M

dipole PSMCs partition radn pattern w.r.t the colour & anti-colour ends

=

Dire soft branching probs from nll-shower-notes
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where C = CF for a q/q̄ dipole end and C = CA/2 for a gluon dipole end
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Dire soft branching probs from nll-shower-notes
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dPĩj̃!ikj =
↵SC

2⇡
dp2? d⌘

p̃i.p̃j
p̃i.pk p̃j .pk

=
2↵SC

⇡

dp?
p?

d⌘
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Figure 1. (a) The accessible contour of emissions in the η− ln p⊥ (“Lund” [78]) plane for fixed
values of the ordering variable v, for splittings of a right-going quark, shown for both the Pythia and
Dire shower kernels. The phase-space boundary is sometimes alternatively described as the hard-
collinear limit. (b) The splitting weights associated with emissions as a function of rapidity from the
(right-going) quark and (left-going) anti-quark, normalised so as to be 1 in the soft-collinear region.
This holds for both Pythia and Dire. The weights are independent of v, as long as v/Q " e−|η|,
i.e. as long as one is far from the phase-space boundary shown in (a). The rapidity is defined in the
qq̄ dipole centre-of-mass frame.

The essential properties of single-parton emission are illustrated in figure 1. There are

three main elements to comment on regarding the above analysis:

1. The effective single-emission matrix element in Pythia and Dire is correct in all

singly-divergent regions of phase space, i.e. both soft large-angle and hard-collinear,

as well as soft-collinear. In Pythia the invariance of the radiation pattern under

boosts along the dipole direction is broken by running coupling effects: the same

scale µR = v is used along the whole contour of constant v, even though, as one

sees from figure 1a, that contour maps to a range of different physical p⊥ values.

This effect is expected to have consequences that are beyond NLL accuracy, because

the region where p⊥ differs substantially from v comes with a finite weight only at

large angle and a strongly suppressed weight in the anti-collinear region, cf. figure 1b.

Accordingly we will not discuss it further in this article.

2. In both Pythia and Dire, the dipole is divided into two parts, one associated with

the quark, the other with the anti-quark. That division occurs at zero-rapidity in the

dipole rest frame, as is visible clearly in figure 1b. While the sum adds up to one,

the two elements of the partition behave differently for subsequent emissions, and

the specific choice of partitioning can then have adverse consequences, as we shall

see shortly. In particular it will affect subleading-Nc LL terms, and the full set of

NLL terms.
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qq
_

g1

dipole partitions back in the event COM are not symmetric

Consider we emitted soft gluon g1 from hard qq, so we end up with a qg1 and a g1q dipole:

qq
_

g1

To get us from the event COM to the g1q dipole COM [blue line] requires a BIG BOOST → 

Dipole partitioned at η= 0 in that frame:

To get us back to the event COM from the g1q dipole COM undo the same BIG BOOST ←

In event COM partition comes out very close to q ; instead of equidistant in angle between g1 & q

qg1

q
_

_ _



qg1 dipole partition is similarly located at η= 0 in qg1 COM 

But for soft g1 the qg1 COM also involves BIG BOOST → to return that back to event COM 

Our dipole PSs thus encode the following partitioning & associated emitter-spectator labelling

dipole partitions back in the event COM are not symmetric
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Colour coherence [angular ordering] instead dictates we should partition things more like in the 

following picture, using the same colour coding for g2’s emitter-spectator assignment as before

dipole partitions that angular ordering would prescribe
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dipole partitions and colour factor issues

qq
_

g1

In attributing emission of g2 to g1 over much greater angular regions than advocated by colour 
coherence ̶ including regions when g2  is essentially collinear to the q or q ̶ our dipole 
showers generate g2 with a CA/2 colour factor in regions where the correct colour factor is CF 

The effective soft+collinear ME for g2  has wrong colour factor including at small angles 

In general causes spurious subleading NC  terms to appear at LL level

qq
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The dipole shower phase space partitioning of g2’s radiation pattern is:

Angular ordering implies a partitioning more like the following: 

CA/2

CF
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CA/2CA/2 CF
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Emitter-spectator assignment also  
determines how recoil is attributed 

Emitter balances p⟂ of emission w.r.t 
emitter’s original dirn, spectator’s 
energy shrinks to make up the rest 

Consider g1 on the top-right & how it 
recoils to become g1 depending on 
the partition g2 comes out in 
[depending on emitter assignment] 

Emissions widely separated in angle 
aren’t supposed to talk to each other! 

g1 kicked by g2 too often 

This issue generalises to all orders 
leading to spurious NLL contributions

dipole partitions and recoil attribution issues

q
_

q

g1~

q
_

g1

g2
q

q
_

g2g1

q

q
_
g2

g1

q

cartoon: not to scale!
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 PSMCs at NLL

https://link.springer.com/article/10.1007/JHEP09(2018)033


Existing dipole shower algorithms are correct for commensurate angles and ordered energies 

We seek to make them work also for emissions with commensurate p⟂’s and strong A.O.  

In the first case we limit ourselves to the same dipole-local recoil employed in existing PSMC 

Recall existing dipole PSMCs partition dipoles symmetrically in angle in the dipole’s C.O.M 

qq
_

g1

NLL PSMC with a dipole-local recoil scheme : PanLocal



Novel element 1 : partition each dipole symmetrically in angle in the event C.O.M instead: 

Better but still not as A.O. prescribes in the qg1 dipole region 

Radn can be emitted at wide angles w.r.t earlier emissions [here g1] with recoil, colour factors, 
etc all still attributed to the wrong emitter: spurious LL large-Nc terms & NLL full Nc ones 

NLL PSMC with a dipole-local recoil scheme : PanLocal
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Novel element 2 : choose an evolution variable that effectively imposes some angular ordering

Ordering emissions in this variable implies those with commensurate kt’s are ordered from 
larger to smaller angles 

Any later emissions going in the wide angle part of the blue region have at least comparable 
emission angles to g1 : ordering in v then implies kt,1 ≫ kt,2, i.e. there is no recoil to mishandle 

Together, the dipole partitioning and ordering variable combine such that at any significant kt 
recoil in the event is always taken by the extremities of the [hard] qg{…}gq dipole chain

NLL PSMC with a dipole-local recoil scheme : PanLocal

qq
_

g1

lim
↵S!0

⌃PS

⌃NLL
6= 1

lim
↵S!0

⌃PS

⌃NLL
= 1

lim
↵S!0

⌃PS

⌃NLL

lim
↵S!0

⌃PS

⌃NLL
6= 1

lim
↵S!0

⌃PS

⌃NLL
= 1

⌃T = ⌃i2⌦ Et,i

v = kt,̃ik


✓ĩk
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NLL tests of full-fledged PS MC implementations

https://link.springer.com/article/10.1007/JHEP09(2018)033


Testing NLL accuracy : global and non-global observables

We considered cumulative distributions for a wide variety of observables, e.g. jet rates and 
event shapes, in the limit αS L~1 and |L|≫1, with 2-loop running αS in the CMW scheme 

Results for all such tested observables are known from analytic resummation to have this form

To compare PSMC to analytic NLL we compute ratios ΣPS /ΣNLL and extrapolate toαS → 0† 

If PS not NLL , ΣPS fails for O(αS
nLn    ) i.e. O( 1 )  we will find  

If PS NLL OK , ΣPS fails for O(αS
nLn-1) i.e. O(αS) we will find

lim
↵S!0

⌃PS

⌃NLL
6= 1

lim
↵S!0

⌃PS

⌃NLL
= 1

lim
↵S!0

⌃PS

⌃NLL

lim
↵S!0

⌃PS

⌃NLL
6= 1

lim
↵S!0

⌃PS

⌃NLL
= 1

6

Z v0

v1

dPPYTHIA =

Z v0

v1

2↵SC

⇡

dv

v

Z � ln v

�1
d⌘

e2⌘

1 + e2⌘

=

Z v0/Q

v1/Q

2↵SC

⇡
d ln

v

Q

Z � ln v
Q

�1
d⌘

e2⌘

1 + e2⌘

=

Z v0/Q

v1/Q

2↵SC

⇡
d ln

v

Q

1

2
ln


Q2

v2
+ 1

�

v⌧Q
⇡ �2↵SC

⇡

Z 0

ln v1/Q
d ln

v

Q
ln

v

Q

=
↵SC

⇡
ln2

Q

v1

e�↵̄SL
2 e�2⌘

1 + e�2⌘
⇠ e�↵̄SL

2

e�↵̄Sl
2 e+2⌘

1 + e+2⌘

e�↵̄SL
2 e�2⌘

1 + e�2⌘
⇠ e�↵̄Sl

2 e+2⌘

1 + e+2⌘

e±2⌘

1 + e±2⌘

e�↵̄SL
2

⇠ e�↵̄Sl
2 e+2⌘

1 + e+2⌘
⇡ e�↵̄S[l2+2|⌘|/↵̄S]

L2 ⇠ l2 + 2 |⌘| /↵̄S

lim
↵S!0

⌃PS

⌃NLL

lim
↵S!0

⌃PS

⌃NLL
6= 1

lim
↵S!0

⌃PS

⌃NLL
= 1

lim
↵S!0

⌃PS

⌃NLL

lim
↵S!0

⌃PS

⌃NLL
6= 1

lim
↵S!0

⌃PS

⌃NLL
= 1

lim
↵S!0

⌃PS

⌃NLL

5

zero for η slice

LL ~αS
nLn+1~ O(αS

-1) NLL ~αS
nLn~ O(1) NNLL ~αS

nLn-1~ O(αS)

fracn of events where   
observable value < eL

†  This technical challenge well outweighs the theoretical one of formulating the new PSMC models



Global observables : testing the angular ordered regime

NLL OK for all observablesnot NLL

Testing NLL accuracy : comparison of PSMCs to dedicated NLL calcns

Global 
observables

Orange triangles signal that fixed order analysis reveals deviations from NLL results  

As expected, PanLocal with transverse momentum ordering [β = 0] fails like PYTHIA8/DIRE



Testing NLL accuracy : comparison of PSMCs to dedicated NLL calcns

non-global: scalar pt 
sum in rapidity slice

Ω

Δη=2
ET =

X

i2⌦

Et,i

Non-global observables : testing the energy ordered commensurate angle regime



Testing NLL accuracy : comparison of PSMCs to dedicated NLL calcns

kt-jet multiplicity [as fn of ln ycut] : sensitive to full nested soft-collinear branching structure

kt-jet multiplicity      
[as fn of ln ycut]



Testing NLL accuracy : multiple emission matrix elements

Imagine the event is a real event as from mother nature 

Imagine it’s clustered into two-jets by the Cambridge algorithm

Z
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Testing NLL accuracy : multiple emission matrix elements

Imagine the event is a real event as from mother nature 

Imagine it’s clustered into two-jets by the Cambridge algorithm 

Undo last step of the clustering sequence on each jet breaking each one into two pseudojets  

Undo last step of the clustering sequence on each of the hardest pseudo jets just produced 

Iterate undoing the clustering on the hardest produced pseudojet until you can’t do it anymore 

Now measure the azimuthal sepn, Δψ12 , of the two highest p⟂ pseudojets

Z

These may or may not be in the same jet!



Testing NLL accuracy : multiple emission matrix elements

We measure the azimuthal sepn at very 
small kt’s : -0.6 < αS ln kt,1/Q < -0.5 

We require the two pseudojets have 
commensurate kt’s: 0.3 < kt,2/kt,1 < 0.5   

The only logarithms that can develop 
are therefore due to large angular sepns 

We know that in this limit of 
commensurate kt’s and strong A.O. all 
emissions are blind to each other: 
Δψ12  distn is flat for NLL QCD ! 

We extrapolate Δψ12  distn to αS → 0

α
S 

→
 →

 →
 →

 0



Testing NLL accuracy : multiple emission matrix elements

Exact same pattern of results unfolds as 
for the  global observables [predictably] 

But deviations from NLL are bigger 

PYTHIA8 & DIRE kt ordered local recoil 
PSMCs deviate up to 60% from NLL 

Deviation in H→ gg case only goes up to 
30% ; additional colour line in case of 
gluon jets means pseudojets 1 & 2 half as 
likely to be colour connected   

Such deviatns can bias ML based analysis



PSMCs are central everyday tools in the LHC physics programme 

PSMCs are subject to a high-level of validation w.r.t each other & data 

We advocate supplementing this with additional theoretical validation 

i.    examining the extent to which they capture singularities of multi-parton MEs 
ii.   checking how their predictions compare to logarithmic resummation 

We find existing dipole PSMCs violate colour coherence leading to LL & NLL issues  

We point to key physical elements in NLL resummation of global and non-global 
observables, as mandatory design constraints on PSMCs 

Concrete local- & global-recoil dipole PSMCs based on these were defined 

Full-fledged implementations were proven to be NLL for a wide range of observables

Summary



NLL building blocks : ME for strong energy ordering

Non-global observables involve non-trivial partitions in phase space, e.g. jet-cone  

Resummation requires correct handling of emissions commensurate in angle, ordered in energy 

E,i+1 ⪡ E,i implies eikonal approximation 

In the large-Nc limit dipoles don’t talk to each other [all charged differently] 

Ratio of n+1- to n-particle MEs for a given colour confign is sum of MEs for each dipole to emit 
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Summing and symmetrising the latter over all possible orderings gives 

N.B. unlike the A.O. limit, in the limit E,i+1 ⪡ E,i recoil can be safely forgotten about



The longitudinal recoil from each emission is still balanced within the emitting dipole like so 

The event started with momentum Q and now has momentum Q+k⟂ 

All particles in the event are rescaled by the same factor, r, to maintain its invariant mass 

k⟂ balanced by boosting the event from r(Q+k⟂) back to Q 

k⟂ dominantly absorbed by the most energetic particles in the event; hard qq ends of dipole chain 
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energy ordered emissions without changing the ordering variable: k⟂ ordering will work
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FIG. 1. Left: distribution for the di↵erence in azimuthal angle between the two highest-kt primary Lund declusterings in the
Pythia8 dipole shower algorithm, normalised to the NLL result [51, 53]; successively smaller ↵s values keep fixed ↵s ln kt1.
Middle: the same for the PanGlobal(� = 0) shower. Right: the ↵s ! 0 limit of the ratio for multiple showers. This observable
directly tests part of our NLL (squared) matrix-element correctness condition. A unit value for the ratio signals success.

in common dipole showers causes multi-gluon emission
matrix elements to be incorrect in the limit of similar
kt’s and disparate angles, starting from ↵2

s, leading to
incorrect NLL terms.

Note that with dipole-local recoil, NLL correctness also
requires � < 1, because with � � 1 the kinematic con-
straint associated with fixed dipole mass means that a
first emission cuts out regions of phase space for a sec-
ond emission at similar ln v.

A second class of shower can be constructed with
global, i.e. event-wide recoil (the PanGlobal shower). It
can be formulated in largely the same terms as the dipole-
local recoil shower, but with a two-step recoil procedure.
In the first step one sets

p̄k = akp̃i + bkp̃j + k? , (5a)

p̄i = (1� ak)p̃i , (5b)

p̄j = (1� bk)p̃j . (5c)

The second step is to apply a boost and rescaling to the
full event (including the p̄i,j,k momenta) so as to obtain
final momenta {p} whose sum gives Q. This approach
assigns transverse recoil dominantly to the most ener-
getic particles in the event. Thus emission from a hard
qg{. . .}gq̄ dipole string transfers its recoil mostly to the
hard q and q̄ ends. This ensures that one reproduces
a pattern of independent emission for commensurate-kt
and angular-ordered gluons, while also retaining the cor-
rect (dipole) pattern for energy-ordered, commensurate
angles. This holds even for � = 0, i.e. with kt order-
ing. Values of � � 1 remain problematic, however. Note
that the PanGlobal shower has power-suppressed routes
to highly collimated events. These compete with normal
Sudakov suppression, as observed also for Pythia8 [37].
We have verified that such e↵ects are small even at the
very edges of future (FCC-hh [59]) phenomenologically

accessible regions. Nevertheless, ultimately one may wish
to explore alternative global recoil schemes.

The next step is to compare our showers to NLL ob-
servables. Relative to earlier attempts at such compar-
isons [60], a critical novel aspect is how we isolate the
structure of NLL terms ↵n

sL
n. For each given observ-

able v, with L = ln v, we consider the ratio to the true
NLL result in the limit ↵s ⌘ ↵s(Q) ! 0 with fixed ↵sL.
This helps us isolate the NLL terms from yet higher-order
contributions, which vanish in that limit. Numerically, a
parton shower cannot be run in the ↵s ! 0 limit for fixed
↵sL. However, with suitable techniques [51, 61–63], one
can run multiple small values of ↵s and extrapolate to
↵s = 0. We examine not just our showers, but also our
implementations of two typical kt-ordered shower algo-
rithms with dipole-local recoil, those of Pythia8 [2] and
Dire [11] (with the ↵s +K↵2

s choice as in Eq. (4)).

A first test concerns the multiple-emission matrix el-
ement. We have constructed our showers specifically so
that they reproduce the squared matrix elements in the
limits discussed above that are relevant for NLL accuracy.
A simple observable for testing this is to consider the two
highest-kt Lund-plane primary declusterings [64, 65] with
transverse momenta kt1 and kt2 (originally defined for
hadronic collisions, the e+e� analogue is given in Ref. [51]
and implemented with FastJet [66]). The ↵s ! 0 limit
for fixed ↵sL (L = ln kt1/Q), ensures that the two declus-
terings are soft and widely separated in Lund-plane pseu-
dorapidity ⌘ (which spans |⌘| . |L| ⇠ 1/↵s). In this limit
the full matrix element reduces to independent emission
and so the di↵erence of azimuthal angles between the two
emissions, � 12, should be uniformly distributed, for any
ratio kt2/kt1 (recall that strongly angular-ordered soft
emission is not a↵ected by spin correlations). We con-
sider the � 12 distribution in Fig. 1.
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NLL e↵ects in global observables such as jet broaden-
ings. Showers that omit spin correlations fail to repro-
duce (the azimuthal structure of) matrix elements for
configurations ordered in angle but with commensurate
energies [44–46], and associated NLL terms.

Our second criterion for logarithmic accuracy tests,
among other things, the overall correctness of virtual cor-
rections. For showers that intertwine real and virtual
corrections directly through unitarity, once the genera-
tion of tree-level matrix elements is set, there is only one
(single-emission) degree of freedom that remains, namely
the choice of scale and scheme for the strong coupling
for each emission, as a function of its kinematics. To
claim NLL accuracy, we will require the resulting shower
to reproduce known analytical NLL resummations across
recursively infrared and collinear safe (rIRC) [47] global
and non-global two-scale observables as well as (subjet)
multiplicities.

The challenge that we concentrate on here is to for-
mulate showers that can handle each of two regions cor-
rectly: the energy-ordered, commensurate-angle region;
and the angular-ordered, commensurate kt region. Re-
call that existing kt and angular-ordered showers can
each handle one of these limits, but not both. Strictly,
full NLL accuracy also requires attention to the angular-
ordered, commensurate energy region. However, given
that general solutions for the required spin correlations
are known to exist [45, 48–50], and that they a↵ect only
a small subset of observables, we postpone their study to
future work. For now, we also restrict our attention to
final-state showers (i.e. lepton-lepton collisions), massless
quarks and the large-NC limit. Our guiding principle will
be that soft emissions should not a↵ect, or be a↵ected by,
subsequent emissions at disparate rapidities.

The two classes of shower that we develop both con-
sider emissions from colour dipoles. We consider a con-
tinuous family of shower evolution variables v, parame-
terised by a quantity � in the range 0  � < 1, where
� = 0 corresponds to transverse-momentum ordering.
The phase space involves two further variables besides v:
a pseudorapidity-like variable within the dipole, ⌘̄, and
an azimuthal angle �.

We start with a shower with dipole-local recoil (the
PanLocal shower). Its mapping for emission of momen-
tum pk from a dipole {epi, epj} is

pk = akp̃i + bkp̃j + k? , (1a)

pi = aip̃i + bip̃j � fk? , (1b)

pj = aj p̃i + bj p̃j � (1� f)k? , (1c)

where k? = kt [n?,1 cos�+ n?,2 sin�], with n2
?,m = �1,

n?,m · epi/j = 0 (m = 1, 2), n?,1 · n?,2 = 0 and

kt = ⇢ve�|⌘̄| , ⇢ =

✓
sı̃s|̃
Q2sı̃|̃

◆ �
2

. (2)

Here sı̃|̃ = 2epi · epj , sı̃ = 2epi ·Q, and Q is the total event
momentum. The light-cone components of pk are given

by
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r
sı̃
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The quantity f in Eq. (1) determines how transverse
recoil is shared between pi and pj , cf. below. The
ai, bi, aj , bj are fully specified by the requirements p2i/j =

0, (pi + pj + pk) = (epi + epj) and pi = p̃i for kt ! 0 and
are given explicitly in Ref. [51].
In the event centre-of-mass frame, ⌘̄ = 0 corresponds

to a direction equidistant in angle from epi and epj . For
soft-collinear emissions, the physical pseudorapidity, ⌘ =
� ln tan ✓

2 , with respect to the emitter is ⌘ = |⌘̄|+ 1
� ln ⇢.

Soft-collinear emissions from distinct dipoles but with
the same ln v fall onto common contours in the Lund
plane [52], kt = ve�|⌘|.
For e+e� ! hadrons, the shower starts from a 2-

parton qq̄ state, S2. The probability of evolving from
Sn ! Sn+1 in a given slice d ln v of evolution variable is

dPn!n+1

d ln v
=

X

dipoles {ı̃,|̃}

Z
d⌘̄
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↵s(kt) +K↵2
s(kt)

⇡

⇥ [g(⌘̄)akPı̃!ik(ak) + g(�⌘̄)bkP|̃!jk(bk)] , (4)

with a function g(⌘̄) that satisfies g(⌘̄) + g(�⌘̄) = 1, has
g(⌘̄) = 0 (1) for su�ciently negative (positive) ⌘̄, and
smoothly transitions around ⌘̄ = 0. The Pı̃!ik(z) are
first-order splitting functions [54–56], normalised so that
limz!0 zPı̃!ik(z) = 2C with C = CF = CA/2 = 4

3 (our
large-NC approximation, augmented [57] with nf = 5).
The specific choice of g(⌘̄) is not critical here, while the
splitting functions are standard. Both are detailed in
Ref. [51]. The MS coupling, ↵s(kt), needs at least 2-loop

running, and K = 1
2⇡

h⇣
67
18 � ⇡2

6

⌘
CA � 5

9nf

i
[58].

The PanLocal shower comes in two variants. In a
dipole variant, inspired by many earlier dipole show-
ers [2, 5, 11], the Pı̃!ik(ak) (P|̃!jk(bk)) term of Eq. (4)
is associated with the choice f = 1 (f = 0) in Eq. (1).
In an antenna variant, inspired by Refs. [3, 43], we take
a common f(⌘̄) for both terms and set f(⌘̄) = g(⌘̄).
A key di↵erence relative to earlier showers is that our

transition in transverse recoil assignment between i and
j takes place at ⌘̄ ' 0, i.e. equal angles between the
epi and epj directions in the event centre-of-mass frame
(note similarities with Deductor [9]). This di↵ers from
the common choice of a transition in the middle of the
dipole centre-of-mass frame. Our choice ensures that a
given emission will not induce transverse recoil in earlier,
lower-rapidity emissions. Additionally, we require � > 0
in the definition of the ordering variable, Eq. (2). This
causes emissions at commensurate kt and widely sepa-
rated in |⌘| to be e↵ectively produced in order of increas-
ing |⌘|, so that any significant kt recoil is always taken
from the extremities of a (hard) qg{. . .}gq̄ dipole chain.
Together, these two elements provide a solution to the
problem observed in Ref. [37], i.e. that recoil assignment
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