‘@_s’ Queen Mary

University of London

ADRIAN BEVAN

INTRODUCTION TO MACHINE LEARNING
PART 2

LECTURES GIVEN IN THE PARTICLE PHYSICS DIVISION AT THE RUTHERFORD APPLETON
LABORATORY, MAY/JUNE 2020

ARTIFICIAL NEURAL NETWORKS
MULTILAYER PERCEPTRONS
AUTO-ENCODERS

CONVOLUTIONAL NEURAL NETWORKS
GENERATIVE ADVERSARIAL NETWORKS

NEURAL NETWORKS

o
A.Bevan ‘a;Q_ﬁ.l Queen Mary

University of London

ROSENBLATT'S PERCEPTRON
ACTIVATION FUNCTIONS

ARTIFICIAL NEURAL NETWORKS
BACK PROPAGATION

OTHER REMARKS

EXAMPLE: FUNCTION APPROXIMATION

ARTIFICIAL NEURAL
NETWORKS

o
A.Bevan ‘a;Q_ﬁ.l Queen Mary

University of London

i =:_j=};;‘_:._’ : ’
INTRODUCTION TO MACHINE LEARNING 4

ROSENBLATT'S PERCEPTRON

» Rosenblatt!! coined the concept of a perceptron as a probabilistic model for
information storage and organisation in the brain.

» Origins in trying to understand how information from the retina is

processed . Simplified view of Fig 1 from Rosenblatt’s paper.
Projection R1
' o R Responses
Retina (response 2 P
function) Ra

» Start with inputs from different cells.

» Process those data: "if the sum of excitatory or inhibitory impulse

intensities is either equal to or greater than the threshold (0) ... then
the A unit fires”.

» This is an all or nothing response-based system.

b
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. A. Bevan \GQ_QI Queen Mary

University of London

77 3N
INTRODUCTION TO MACHINE LEARNING 5

ROSENBLATT'S PERCEPTRON

» This picture can be generalised as follows:

» Take some number, n, of input features

» Compute the sum of each of the features multiplied by
some factor assigned to it to indicate the importance of
that information.

» Compare the sum against some reference threshold.

» Give a positive output above some threshold.

L
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. A. Bevan \Q\,Qsl Queen Mary
University of London

e S

INTRODUCTION TO MACHINE LEARNING 6

ROSENBLATT'S PERCEPTRON

» Illustrative example:

» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the
perceptron is to give an output (value = 1) or not (value

= 0).
Wi 0
+ = <
WoTo - 1

b
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. A. Bevan \G‘Q_al Queen Mary

University of London

m ’
INTRODUCTION TO MACHINE LEARNING 7

ROSENBLATT'S PERCEPTRON

» Illustrative example:

» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the

perceptron is to give an output (value = 1) or not (value
= 0).

>, > 9 Output

w2
L9

b
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. A. Bevan \G‘Q_sl Queen Mary

University of London

L&

INTRODUCTION TO MACHINE LEARNING 8

ROSENBLATT'S PERCEPTRON

» Illustrative example:

» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the
perceptron is to give an output (value = 1) or not (value

= 0).
If wixq1 + woxe > 0
Output = 1
else
Output =0

b
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. A. Bevan \G‘Q_al Queen Mary

University of London

L&

INTRODUCTION TO MACHINE LEARNING 9

ROSENBLATT'S PERCEPTRON

» Illustrative example:

» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the

perceptron is to give an output (value = 1) or not (value
= 0).

If wixy + woxy >0

' This is called a binary 1
OUtpUt = 1 | activation function, and is
a generalisation of the |

Heaviside function to a
‘multidimensional feature |
‘space. |

else

Output =0

b
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. A. Bevan \G‘Q_al Queen Mary

University of London

gttt o

INTRODUCTION TO MACHINE LEARNING 10

ROSENBLAIT'S PERCEPTRON

» lllustrative examples:

0 = 0 =0 0 =0.5

i
|

' Rotate decision
plane in (x4, x2)

i}ﬁ/ 7 . V .
Baseline for comparison,

Shift decision plane |
decision only on value of x |

away from origin

e e —————— W e e

[1]1F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. A.Bevan \aaQ_sl Queen I\/Iary

University of London

Ebw

INTRODUCTION TO MACHINE LEARNING 11

ROSENBLATT'S PERCEPTRON

» Illustrative example:

» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the

perceptron is to give an output (value = 1) or not (value
= 0).

» We can generalise the problem toN quantltles as

g w;x; + 06
wlx + @ is the equation

— f(w X —+ 9) ofa hyperplane.

| ‘The argument is just the
| same functional form of
Fisher's discriminant.

A.Bevan \G,Qsl Queen Mary

rsity of London

e S

b
INTRODUCTION TO MACHINE LEARNING 12

ROSENBLATT'S PERCEPTRON

» Given some training data, we can learn the hyper parameters 6 for this

single Rosenblatt perceptron.
» Step 1:

» Choose the loss function and initialise the 6.
» Step 2:

» Optimise the loss function to determine the optimal y,
corresponding to the optimal hyper parameters 6.

» Step 3:

» Evaluate the model performance (e.g. accuracy or some other metric)

L
A.Bevan \Q‘Q_sl Queen |\/|al’y

University of London

77 3N
INTRODUCTION TO MACHINE LEARNING 13

ACTIVATION FUNCTIONS

» The binary activation function of Rosenblatt is just one
type of activation function.

» This gives an all or nothing response.

» It can be useful to provide an output that is continuous
between these two extremes.

» For that we require additional forms of activation
function.

nnnnnnnnnnnnnnnnnn

INTRODUCTION TO MACHINE LEARNING 14

ACTIVATION FUNCTIONS: LOGISTIC (OR SIGMOID)

» A common activation function used in neural networks:

1
1+ 6wT:c—|—9

1
1+ elwiz1twaza+0)

nnnnnnnnnnnnnnnnnn

INTRODUCTION TO MACHINE LEARNING 15

ACTIVATION FUNCTIONS: LOGISTIC (OR SIGMOID) s

» A common activation function used in neural networks:

' rotate "decision
boundary” in (x1, x2)

— =

o ' — - 1

il
]l

"}7-/ : . V . -
| Baseline for comparison,
decision only on value of x> |

_

oooooooooooooooo

- - - ..
—s 2
SRR R s
™

INTRODUCTION TO MACHINE LEARNING 16

ACTIVATION FUNCTIONS: HYPERBOLIC TANGENT

» A common activation function used in neural networks:

y = tanh(w' = + 0)
= tanh(wix1 + woxs + 6)

(Often used with 6 = 0)

nnnnnnnnnnnnnnnnnn

INTRODUCTION TO MACHINE LEARNING 17

ACTIVATION FUNCTIONS: HYPERBOLIC TANGENT tenb(wra: + wow. +6)

» A common activation function used in neural networks:

1.00
0.95
1.0 y0.90
0.85
0.80

W1—1

Baseline for comparison, |
decision only on value of x; |

—

 Offset (vertically
zero using ©

rotate "decision
boundary” in (x4, x2) ‘

===

A.Bevan %Q) Queen Mary

oooooooooooooooo

INTRODUCTION TO MACHINE LEARNING 18

ACTIVATION FUNCTIONS: RELU

» The Rectified Linear Unit activation function is commonly
used for CNNs. This is given by a conditional: |

» f(x<0)y=0 /

0 X

>

» otherwisey = x

nnnnnnnnnnnnnnnnnn

INTRODUCTION TO MACHINE LEARNING 19

ACTIVATION FUNCTIONS: RELU

» The Rectified Linear Unit activation function is commonly
used for CNNs. This is given by a conditional: |

>

» f(x<0)y=0

» otherwisey = x

wi=1wy=0 wi=1 wy=1 wi=1,wy,=0.5

Importance of features in the perceptron still *
P . . P . P A.Bevan WO Queen Mary
depend on weights as illustrated in these plots. Universy of London

e S

b
INTRODUCTION TO MACHINE LEARNING 20

ACTIVATION FUNCTIONS: PRELU VARIANT

» The RelU activation function can be modified to avoid gradient singularities.

» This is the PReLU or Leaky RelLU activation function o1
» If (x < 0)y=a*x
» otherwise y = x g

» Collectively we can write the (P)ReLU activation function as

f(z) = max(0,x) + amin(0, x)

» Can be used effectively for need CNNs (more than 8 convolution layers),
whereas the ReLU activation function can have convergence issues for such a
configuration!2l,

» If ais small (0.01) it is referred to as a leaky ReLU functionl'l. The default
implementation in TensorFlow has a=0.2[31.

[1] Maas, Hannun, Ng, ICML201 3.
[2] He, Zhang, Ren and Sun, arXiv:1502.01852 &
[3] See https://qgithub.com/tensorflow/tensorflow/blob/r2.2/tensorflow/python/ops/nn_ops.py A.Bevan \G;le Queen Mary

University of London

https://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf
https://arxiv.org/abs/1502.01852
https://github.com/tensorflow/tensorflow/blob/r2.2/tensorflow/python/ops/nn_ops.py

77 3N
INTRODUCTION TO MACHINE LEARNING 21

ACTIVATION FUNCTIONS: RELU

» Performs better than a sigmoid for a number of
applications!l.,

» Weights for a relu are typically initialised with a
truncated normal, OK for shallow CNNs, but there are

convergence issues with deep CNNs when using this
initialisation approachl'l.

» Other initialisation schemes have been proposed to

avoid this issue for deep CNNs (more than 8 conv layers)
as discussed in Ref [2].

[11 Maas, Hannun, Ng, ICML2013.

L
WO
[21 He, Zhang, Ren and Sun, arXiv:1502.01852 A.Bevan QQ g‘ggﬁfﬂnh{lary

https://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf
https://arxiv.org/abs/1502.01852

e S

b
INTRODUCTION TO MACHINE LEARNING 22

ACTIVATION FUNCTIONS: RELU

» N.B. Gradient descent optimisation algorithms will not
change the weights for an activation function if the initial
weight is set to zero.

» This is why a truncated normal is used for initialisation,
rather than a Gaussian that has x € [— o0, + o0].

Y Yy
0.5_- 0.5_‘
0.4+ 0.4}
2 ey 2 f
1 6_(55_.U) /20 0.3F
o\ 2T :
0.2_‘
E— 0.1
—I4 IIIII 4 * II —I4 III —I2 III 4I|- *

[11 Maas, Hannun, Ng, ICML2013.

WO
21 He, Zhang, Ren and Sun, arXiv:1502.01852 A.Bevan %Q Queen Mary

University of London

https://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf
https://arxiv.org/abs/1502.01852

m
INTRODUCTION TO MACHINE LEARNING

ACTIVATION FUNCTIONS: RELU

» N.B. Gradient descent optimisation algorithms will not
change the weights for an activation function if the initial

weight is set to zero.

» This is why a truncated normal is used for initialisation,

rather than a Gaussian that has x € [— o0, + 00]

y

0.5 r

0.4+

[11 Maas, Hannun, Ng, ICML2013.
[21 He, Zhang, Ren and Sun, arXiv:1502.01852

1

o\ 2T

6—($—M)2/202

23
. TensorFlow default
[parameters for the
0.4} truncated normal are:
; u=0.0
- o=1.0

0.2F

0.1}

L
A.Bevan \Q“Q_‘:;I Queeﬂ |\/|al’y

University of London

https://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf
https://arxiv.org/abs/1502.01852

e S

b
INTRODUCTION TO MACHINE LEARNING 24

ARTIFICIAL NEURAL NETWORKS (ANNs)

» A single perceptron can be thought of as defining a

hyperplane that separates the input feature space into two
regions.

A binary threshold activation function is
an equivalent algorithm to cutting on a
fisher discriminant to distinguish
between types of training example:

F=wlz+7

or a node in an oblique decision tree.

The only real difference is the heuristic
used to determine the weights.

L
A.Bevan \Q‘Q_sl Queen |\/|al’y

University of London

77 3N
INTRODUCTION TO MACHINE LEARNING 25

ARTIFICIAL NEURAL NETWORKS (ANNs)

» A single perceptron can be thought of as defining a hyperplane
that separates the input feature space into two regions.

» This is a literal illustration for the binary threshold perceptron.

» The other perceptrons discussed have a gradual transition
from one region to the other.

» We can combine perceptrons to impose multiple hyperplanes

on the input feature space to divide the data into different
regions.

» Such a system is an artificial neural network.

L
A.Bevan \GQ_sl Queen |V|al’y

University of London

X3
INTRODUCTION TO MACHINE LEARNING 26

ARTIFICIAL NEURAL NETWORKS (ANNs)

» The simplest general ANN has one input node, one output

node and some number of hidden layer nodes.
1

x (input)

Approximation by Superpositions of a Sigmoidal Function* | _

G. Cybenkot - The Universal Function Approximation
| theorem states that neural networks under

Abstract. In this paper we demonstrate that finite linear combinations of com-

positions of a fixed, univariate function and a set of affine functionals can uniformly some assum ptl ONns can a p p roximate a ny
approximate any continuous function of n real variables with support in the unit

hypercube; only mild conditions are imposed on the univariate function. Qur continuous fu nctions on com pa ct su bsets Of |
results settle an open question about representability in the class of single hidden I
layer neural networks. In particular, we show that arbitrary decision regions can an n-dimensional hy perspace of real

be arbitrarily well approximated by continuous feedforward neural networks with

only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The numbers.

paper discusses approximation properties of other possible types of nonlinearities _ B e — ———

that might be implemented by artificial neural networks.

) L
A.Bevan \GQ_‘:;I Queeﬂ |\/|al’y

Key words. Neural networks, Approximation, Completeness. University of London

https://link.springer.com/article/10.1007/BF02551274

INTRODUCTION TO MACHINE LEARNING 27

BACK PROPAGATION

» For feed forward neural networks like the one described here, we can use the back-propagation
method to update the weight and bias HPs in the network.

» Require differentiable activation functions and loss function (error, E).
» Feed the input feature space vector x through the network to compute the output, and hence E.

» The derivatives of E with respect to the HPs, V E, for this example can then be used to find the
set of HPs corresponding to the minimum loss (or error) of the network using some optimisation
procedure, e.g. gradient descent:

oE 't the training epoch |
Wij(t +1) = Wij(t) —a oW | iisthe ith node in layer | of the network |
v | j is the jth node in layer K of the network i

» The chain rule is used to efficiently compute the set of dE/dw;; requwed for the network, so that
we can then update the weights in the network.

» N.B. The term back propagation is also used to describe the process of using gradient descent
(also known as the delta rulel™l) for m|n|m|smg the L, loss with a neural network (Stage 1+2 for

training a neural network). e , 7
Thls is for stochastic training, and this is adapted for batch training

«Lby considering the sum over the examples in a batch or mini batch
L - : ———

See, for example, C. Bishop, Neural Networks for Pattern Recognition, Ch. 4. and Y. LeCun et al., Efficient BackProp, Neural -
Networks Tricks of the Trade, Springer 1998 (Fig. 3). A. Bevan \Q\,Qsl Queen Mary
[1] Widrow and Hoff (1960), University of London

http://yann.lecun.com/exdb/publis/index.html#lecun-98b

INTRODUCTION TO MACHINE LEARNING 28

OTHER REMARKS

» When performing stochastic training, the optimisation converges faster when
presenting unexpected examples.

» A pragmatic way to do this is to alternate the presentation of examples from different
classes of event to the optimisation.

» Ensuring equal numbers of different classes are presented to the optimisation will
ensure that the learned model has been able to focus equally on distinguishing
different types of event.

» If you feed in different amounts of training data then this may not be helpful: aim to use
equal amounts of training samples for the different types.

» e.g.a dominant background like t7 with very little signal, then the model learned will
be driven by the dominant contribution to the loss function. This is invariably the
example type with the dominant number of examples presented.

» Changing the weighting of the different components will affect the way the
algorithm learns.

L
A.Bevan \é‘Q_sl Queeﬂ |\/|al’y

University of London

scripts/FunctionApproximation.ipynb

INTRODUCTION TO MACHINE LEARNING 29

EXAMPLE: FUNCTION APPROXIMATION

» Consider the model y = x*

» This can be learned using an ANN, with a single input, x, and a single output y for each example.
» Model:

» ADAM optimiser

» 1 hidden layer with 50 nodes

» ReLU activation function for nodes in the hidden layer

» wlx + pfor the output node (to give an unlimited real valued output)
» Train with:

» 1000 epochs.

» Gaussian noise overlaid to “simulate” realistic data

» a =0.001

» 10k examples randomly generated in x € [—10,10] for training, and 10k for testing

» Ly loss

b
A.Bevan %) Queen Mary

University of London

i g : ‘“"‘l |

=X"2

f(x)

scripts/FunctionApproximation.ipynb

INTRODUCTION TO MACHINE LEARNING 30

EXAMPLE: FUNCTION APPROXIMATION

» The model obtained does not give a good prediction.

Network Response Function 1e7
100 A . 4 x 104]
1.75 - Test and train loss Aloss decreases,
80 - 1.50 1 function evolution is 3x 104 indicating no evidence
.. 1251 good, no sign of of overtraining.
% 1.001 overtraining 2 2% 10
40 1 B J
0.75 A
20 4 0.50 1
0.25 A 104 i
0. _
T T T T T T T T T O.OO L T T T T T T T T T T T T
-10.0 -7.5 =50 =25 0.0 2.5 5.0 7.5 10.0 0 200 400 600 800 1000 0 200 400 600 800 1000
X epoch epoch

» Increasing or removing the Gaussian noise will not lead to improvement.

» Increasing the number of epochs or number of training data can yield an
Improvement.

» Changing the network architecture can lead to an improvement.

L
A.Bevan \Q“Q_‘:;I Queeﬂ |\/|al’y

University of London

b i 1‘;;,.' : ’
INTRODUCTION TO MACHINE LEARNING 31

=X"2

f(x)

scripts/FunctionApproximation.ipynb

EXAMPLE: FUNCTION APPROXIMATION

» As before, but now with 10k training epochs.

Network Response Function 1e6
100 A]
51 Test and train loss] Aloss decreases,
. N function evolution is 104' indicating no evidence
60 N good, no sign of | of overtraining.
8 overtraining

40 -
102 4
20 -

102 A
-10.0 -75 -5.0 -25 0.0 2.5 5.0 7.5 10.0 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
X epoch epoch

» Able to learn a good model to approximate the target function.

» Can increase the learning rate to learn faster.

» ADAM has built in learning rate decay parameters, so a learning rate of
0.1 will yield a good training with only 1000 epochs; c.f. the previous
page with a = 0.001.

L
A.Bevan \Q“Q_‘:;I Queeﬂ |\/|al’y

University of London

32

MULTILAYER PERCEPTRONS

... AS DEEP NETWORKS

EXAMPLE: JET FLAVOUR CLASSIFICATION
EXAMPLE: FUNCTION APPROXIMATION

NEURAL NETWORKS
MULTI LAYER PERCEPTRONS

o
A.Bevan ‘aaQ_ﬁ.l Queen Mary

University of London

pE /
INTRODUCTION TO MACHINE LEARNING 33

MULTI LAYER PERCEPTRONS

» lllustrative example: Input data example: z = {z1, 29, 25,...,2,}

</

ARNZa Il
ADK

/

Input layer of n perceptrons;
one for each dimension of the
input feature space

)

/

N
e

nnnnnnnnnnnnnnnnnn

A ‘ ’
INTRODUCTION TO MACHINE LEARNING

MULTI LAYER PERCEPTRONS

» lllustrative example: Input data example: z = {z1, 29, 25,...,2,}

R

A

RN

7’\

A

7\

/

Input layer of n perceptrons;
one for each dimension of the
input feature space

|

Hidden layer of some number
of perceptrons, M; at least one
for each dimension of the input
feature space.

34

L
A.Bevan \GQ_‘:;I Queeﬂ |\/|al’y

University of London

b : i=,=,1;1:,' : ’
INTRODUCTION TO MACHINE LEARNING 35

MULTI LAYER PERCEPTRONS

» lllustrative example: Input data example: z = {z1, 29, 25,...,2,}

X, § 7\
SN 7
SR\ e

|

Output layer of perceptrons;
one for each output type. In
this case the network has
only one output.

/ Hidden layer of some number

Input layer of n perceptrons;
P y P P of perceptrons, M; at least one

one for each dimension of the , , ,
Ut featur for each dimension of the input N
Inpu eature Space feature SpaCe. A. Bevan \G‘Q_‘:;I Queeﬂ |\/|al’y
University of London

L=

b
INTRODUCTION TO MACHINE LEARNING 36

MULTI LAYER PERCEPTRONS AS DEEP NETWORKS

» The term deep network does not have a fixed definition.

» Examples in the literature range from having more than 2 hidden
layers, or having a very large number of nodes in a network.

» We have been using deep network model configurations in HEP for
decades.

» The key point, that is sometimes overlooked, is this:

» The network is trained to a large number of epochs, so that the
model learned can take advantage of subtleties of the data.

» To avoid overtraining the model, deep networks generally require large
training sets, and hence have a significant computational expense.

L
A.Bevan \Q“Q_sl Queen |\/|al’y

University of London

77 3N
INTRODUCTION TO MACHINE LEARNING 37

EXAMPLE: JET FLAVOUR CLASSIFICATION

» Quark colour confinement leads to the creation of jets as pairs of
quarks and anti-quarks are pulled apart.

» As aresult we don't see bare quarks.

» However we do see many hadrons eliminating from some
underlying quark.

» These hadrons form objects called jets that are reconstructed in our

detectors.

» The nature of the underlying quark is of interest as knowing that
allows us to infer something about an underlying interaction; e.g.
the decay of a Higgs boson to two b-quarks requires that we
accurately identify events with two (or more) b jets.

L
A.Bevan \GQ_sl Queen |V|al’y

University of London

> : f:}:,lg‘;,' : /
INTRODUCTION TO MACHINE LEARNING 38

EXAMPLE: JET FLAVOUR CLASSIFICATION

» Consider jet identification in pp collisions at the LHC.

» Vertex, track and calorimeter information are used to identify jets.
» Aim: separate jets into:

» light quarks (u, d, s);

» charm;

» beauty.

» Guest's study uses the anti-kt algorithm for jet reconstruction and
FastJet.

» 8 million jets for training, 1 million for testing and 1 million for validation.

o
Guest et al., Phys. Rev. D 94, 112002 (2016) A.Bevan %O Queen Mary

University of London

INTRODUCTION TO MACHINE LEARNING 39

EXAMPLE: JET FLAVOUR CLASSIFICATION

e The dy and z significance of the 2nd and 3rd tracks
attached to a vertex, ordered by dj significance.

g T L] 1 T L g T I] T T g g T L]]
o — b-quark [n . o [~ b-quark . . .
& of —cqux | @ @ i — cquark e The number of tracks with dy significance greater
S F — Light Flavor 3 B g ges) L] G — Light Flavor
§ ol {1 & § § than 1.80.
lL 10 F % lLoo‘s.. lL LL ‘°¥ — . . L B
_ ‘ ~ 1 e The JETPROB [32] light jet probability, calculated
¥ 1 T T as the product over all tracks in the jet of the prob-
o T ability for a given track to have come from a light-
0) 100 150 200 250 300 “a 0 ols : '.5 ; 25 0 05 1 15 2 25 :: sls : A‘s s 1
" — “ R " I ” e The width of the jet in 7 and ¢, calculated for n as
8 —aun § —baus 8 — o 8
E — cquark E — c-quark E — c-quark E 2 1/2
A B - Bl IR S Rt B (Ei priln;)
= = =
8 8 8 8 :
& N & {1 & & 2. Pr
10 ‘-\‘L“ B 3
e ", 3 | and analogously for ¢.
‘\,L‘_‘"‘: "'_.\1
. ! o - o L Y ' . . e The combined vertex significance,
0 o0s |l 115 ; 215 3 35 4 4‘5 0‘5 1 15 2: 215 3‘ 35 4 415 [+] : 2l 3 5 6 ; ; 2 10 0 OG‘)S O;‘ 001|5 ooz 0&8 0(110 0035 004
Track 2z, signif. Track 3 z, signif. Number of tracks over gthreshold Jet prob. d 2
> idi/o;
ﬁ T T Ll T T ﬁ ﬂ ﬁ T Ll T T T T T L T - 2
§ N, b § § § | o] V2illo;
= e = = s T rnaver] : . :
g " 4 e g g g e where d is the vertex displacement and o is the un-
i] : = F E . . " .
8 .| y 8 8 g] certainty in vertex position along the displacement
o o o wo .
°F 3 axis.
w'E 104
~ F 1 .
i ol B)] e The number of secondary vertices.
10t — Light Flavor " _‘ 3
0O 005 01 015 02 025 03 035 04 0 005 01 015 02 025 03 035 04 0 05 1 15 2 25 3 35 4 45 &5 [+] 2 3 4 5 6 7 8 9 10
Jot widtn Jotwidih Vertex sign, Number of sacondary vertioes e The number of secondary-vertex tracks.
e — P - 2 L P L e The angular distance AR between the jet and ver-
— b-quark ~— bquark J —bquark]
I.E P — cquark IE IE — c-quark IE ——cquark t'ex'
B — Light Flavor B k-] — Light Flavor B — Light Flavor
: s : : : - e The d hai leulated as th f th
S ol 1 3 3 3] e decay chain mass, calculated as the sum of the
B] w w E I 3 invariant masses of all reconstructed vertices, where
L\ _ 1 1 particles are assigned the pion mass.
E 1 . . .
i ﬂ” ” L ﬁ ﬂ_l e The fraction of the total track energy in the jet
0 : 3 5 6 ?l' Bl 9l 10 o ; 10 |15 210 b3 0o 05 1 15 2 215 ; 315 4 45 L4 t d t d rt' 1
Number of secondary vertex tracks AR to vertex Vertex mass [GeV] Vertex Energy Fraction assoclate 0 secondary vertices
Guest et al., Phys. Rev. D 94, 112002 (2016) A.Bevan %Q)d Queen Mary

University of London

— e T ‘
INTRODUCTION TO MACHINE LEARNING

EXAMPLE: JET FLAVOUR CLASSIFICATION

» Several different algorithms are used including MLPs

40

Input Hidden Hidden Hidden
layer laver | layer 2 laver N

{O
O

Output

Shared
weights

» "Experts” are networks that are trained to address a specific
issue. This study constructs “Experts” that are used as inputs to
a final network.

» This is an example of a committee machine.

o
Guest et al., Phys. Rev. D 94, 112002 (2016) A.Bevan %O Queen Mary

University of London

INTRODUCTION TO MACHINE LEARNING 41
EXAMPLE: JET FLAVOUR CLASSIFICATION

» Several different algorithms are used including MLPs

Inputs Technique AUC -f:) 10E ' ' ' L rackssVerticessExpert =
Tracks Vertices Expert _§ eoeaEapert .
v Feedforward 0.916 e L —— Expert N
v LSTM 0.917 £ "F T Ve
v Outer 0.915 = SN S N Tracks]
v Feedforward 0.912 % 107 == =
v LSTM 0.911 4 -]
v Outer 0911 B .
v v Feedforward 0.929 10E 3
v v LSTM 0.929]
v v Outer 0.928 L 1 1 . B
v' Feedforward 0.924 04 05 06 07 08 09 !
/ LSTM 0.925 Signal efficiency
v Outer 0.924
v v' Feedforward 0.937 5 , | | , | —
v v LSTM 0.937 3 —— TeckasVercons Exper
v v Outer 0.936) 10 Tkt E
v v Feedforward 0.931 ~ u - - - - Tracks+Vertices 3
v / LSTM 0.930 g R ks]
v v Outer 0.929 z - .
v v v Feedforward 0.939 E 10— |
v v v LSTM 0.939 (@) -]
v v v Outer 0.937 |
» They give similar performance. L _
0.4 05 0.6 0.7 0.8 0.9 1

Signal efficiency
» CMS has followed a deep network approach to jet tagging in their latest work (e.g.
H—bb) [see A.M. Sirunyan et al 2018 JINST 13 P05011, CMS PAS HIG-18-016].

o
Guest et al., Phys. Rev. D 94, 112002 (2016) A.Bevan %Q)d Queen Mary

University of London

=:_j=};;‘_:._ ’

=X"2

f(x)

scripts/FunctionApproximation.ipynb

INTRODUCTION TO MACHINE LEARNING 42

EXAMPLE: FUNCTION APPROXIMATION (RECAP)

» The model obtained does not give a good prediction.

Network Response Function 1e7
100 A . 4 x 104]
1.75 - Test and train loss Aloss decreases,
80 - 1.50 1 function evolution is 3x10*] indicating no evidence
.. 1251 good, no sign of of overtraining.
% 1.00 overtraining 2 2% 10
40 1 Bl J
0.75 A
20 4 0.50 -
0.25 A 104 i
0. _
T T T T T T T T T O.OO L T T T T T T T T T T T T
-10.0 -75 -5.0 -25 0.0 2.5 5.0 7.5 10.0 0 200 400 600 800 1000 0 200 400 600 800 1000
X epoch epoch

» Increasing or removing the Gaussian noise will not lead to improvement.

» Increasing the number of epochs or number of training data can yield an
Improvement.

» Changing the network architecture can lead to an improvement.

L
A.Bevan \GQ_‘:;I Queeﬂ |\/|al’y

University of London

liﬂ:¥ Aj{:;iii;
INTRODUCTION TO MACHINE LEARNING

EXAMPLE: FUNCTION APPROXIMATION

» Now repeat with an MLP: 1:50:50:1 (2 hidden layers each with 50 nodes)

=X"2

f(x)

100 A

80 A

60 -

40 A

20 A

Network Response Function

-100 -75 =50 -25 0.0 2.5 5.0
X

7.5 10.0

le8

Test and train loss
function evolution is
good, no sign of

overtraining

0

400 600 800 1000

epoch

200

106 -

104 4

scripts/FunctionApproximation.ipynb

43

Aloss generally
decreases, there are
some indications of

increasing values, but
the divergence is mild.

0

600 800 1000

epoch

200 400

» The 2-hidden layer architecture is able to fit the function much better than
the single layer architecture.

» Increasing the number of epochs or number of training data can yield a

further improvement.

L
A.Bevan \GQ_‘:;I Queeﬂ |\/|al’y

University of London

44

AUTO-ENCODERS

o
A.Bevan ‘(";Q_‘gl Queen Mary

University of London

by

INTRODUCTION TO MACHINE LEARNING 45

AUTO-ENCODERS

» Auto-encoders (AEs) Can be used to implicitly learn
fundamental representations of underlying features of the
data to facilitate:

» Noise removal (e.g. de-noising auto-encoder)

» Dimensional reduction

L
A.Bevan \Q‘Q_sl Queen |\/|al’y

University of London

INTRODUCTION TO MACHINE LEARNING 46

USING AUTO-ENCODERS

» Sometimes it is difficult to specify what features need to be extracted
from input data to solve a particular problem, as the type of interest
can manifest itself differently under different scenarios.

» e.g.Special Relativity: Properties depend on the frame of reference;

» Data represented via Lorentz invariants provide a clear picture of the
existence of underlying particles via the mass spectrum.

» In analogy AEs can learn representations of the data.
» They have two parts:
» An encoder that maps input features into a different representation;

» A decoder that is used to convert back into the original format.

L
A.Bevan \c“Q_sl Queeﬂ |\/|al’y

University of London

" N
INTRODUCTION TO MACHINE LEARNING 47

USING AUTO-ENCODERS

» The aimisto learnthe mapping £ +—~ h +— 1

x: input feature space

h: hidden layer giving an alternate

h = f(m) representation of the data
r: reconstruction of x computed by the auto-

» If the AE learns to copy the input feature to the reconstructed output perfectly then ris
not particularly useful.

» The representation given by / can be useful:

» If dim(h) < dim(x) : as the AE is under-compete and learns how to copy x to r using
the most important subset of input features.

» Under-complete AEs can learn something interesting about the input data, which
can be extracted from #.

» AEs with too large a dim(h) can learn to copy x without extracting any interesting
information about the data.

L
A.Bevan \Q‘Q_sl Queen |V|al’y

University of London

INTRODUCTION TO MACHINE LEARNING 48

USING AUTO-ENCODERS

x: input feature space

h: hidden layer giving an alternate

T H h H T representation of the data

r: reconstruction of x computed by the auto-

encoder

Input

feature Output prediction
space 'x I E h I 5 r of the model

r=g(h)=g(f(2))
h=f(z)
Encoder Decoder
(e.g. layer of an MLP) (e.g. layer of an MLP)

L
A.Bevan \EQ_%I Queeﬂ |\/|al’y

University of London

INTRODUCTION TO MACHINE LEARNING 49

EXAMPLE: AUTO-ENCODER

» Dimensional reduction using an AE
configuration of 10 nodes in a
hidden layer:

True Galaxy Reconstructed Galaxy

Galaxy

» Galaxies can be described by 4 .‘

parameters (two ellipticities, a
position angle and an amplitude).

-

» Starts can be described by 2
parameters (radius and
amplitude) Star

» This auto-encoder configuration B &
is able to reconstruct an image of
the galaxy and star with noise
removed.

o
Graff et al., Mon.Not.Roy.Astron.Soc. 441 (2014) no.2, 1741-1759 A.Bevan WQ)d Queen Mary

University of London

50

INPUT DATA
CONVOLUTION LAYERS
PADDING
FILTERS
POOLING
MODEL ARCHITECTURES (& INPUT DATA)
DROPOUT

EXAMPLE: PARTICLE IDENTIFICATION AT MICROBOONE

NEURAL NETWORKS
CONVOLUTIONAL NEURAL NETWORKS

b
A.Bevan YO Queen Mary

University of London

INTRODUCTION TO MACHINE LEARNING 51

INPUT DATA

» CNNs take advantage of spatial correlations of the input
feature space.l]

» This is typically in the form of image data.

» Each pixel corresponds to a feature for each colour that
is encoded in it.

» Greyscale images have a depth of 1, and so the
dimensionality of the feature-space is npixels X Mpixels.’

» Colour images have a depth of 3 (R, G, B); so the
dimensionality of the feature space is 3 X Npixels X Mpixels.”

. . . o
[1] K Fukushima, Bio. Cybernetics 36 p193-202, 1980. A Bevan \é, f Queeﬂ |\/|al’y

"Typically CNNs are applied to square images. University of London

INTRODUCTION TO MACHINE LEARNING 52

INPUT DATA

» An MLP can be used to process
this data, but you loose the
spatial correlations between
information in the image.

» The image can be represented
by a a line of features.

» Doing this removes the spatial
correlations and would naturally
lend itself to being processing
by a perceptron; i.e. f(wTx+0).

» <

» X

This is an 8 by 8 array of pixels, that corresponds
to a 64 dimensional feature space.

L
A.Bevan \é‘Q_sl Queeﬂ |\/|al’y

University of London

77 3N
INTRODUCTION TO MACHINE LEARNING

INPUT DATA

X1 X2 X3 X4 X5 XN

f(wTx+0)

This is an 8 by 8 array of pixels, that corresponds
to a 64 dimensional feature space.

53

An MLP can be used to process
this data, but you loose the
spatial correlations between
information in the image.

The image can be represented
by a a line of features.

But doing this removes the
spatial correlations and would
naturally lend itself to being

processing by a perceptron; i.e.
f(wTx+0).

L
A.Bevan \Q‘Q_sl Queen |V|al’y

University of London

» <

INTRODUCTION TO MACHINE LEARNING

CONVOLUTION LAYERS

This is an 8 by 8 array of pixels, that corresponds
to a 64 dimensional feature space.

54

We can split the image up into a smaller grid of
pixels (filter), and search for a pattern in that
grid.

» In this example we take a 3x3 grid of pixels.

» We can compute a numerical convolution
of these 9 pixels using f(wTx+0).

Spatial correlations within this grid of pixels are
used when computing the numerical
convolution.

Larger filters can be used; where odd numbers
of pixels are normally used:

» 1x1: identity transformation preserve the
input image;

» 3x3, 5x5, ... ; compute convolution image.

L
A.Bevan \Q“Q_‘:;I Queeﬂ |\/|al’y

University of London

L=

b
INTRODUCTION TO MACHINE LEARNING 55

CONVOLUTION LAYERS

» That same “convolution
filter” can be used iteratively
over the whole input image.

» The output values for each
iteration are just the value of
the output of a perceptron.

» <

» The set of outputs from
running the convolution
filter across the input forms
This is an 8 by 8 array of pixels, that corresponds N . . N
to a 64 dimensional feature space. a new “convolution Image .

» X

L
A.Bevan \Q“Q_sl Queen |\/|al’y

University of London

— =:_§‘.,=;;1:._’ : ’
INTRODUCTION TO MACHINE LEARNING)

CONVOLUTION LAYERS

» If you use an M x M filter on an N x N image, the convolved
image is smaller than the original.

flw"z + B)

» <

nnnnnnnnnnnnnnnnnn

by

INTRODUCTION TO MACHINE LEARNING

CONVOLUTION LAYERS

> <

57

» If you use an M x M filter on an N x N image, the convolved

image is smaller than the original.

flw"z + B)

nnnnnnnnnnnnnnnnnn

INTRODUCTION TO MACHINE LEARNING 58

CONVOLUTION LAYERS

» If you use an M x M filter on an N x N image, the convolved
image is smaller than the original.

flw"z + B)

» <

»X 8x8image 3x3 filter 6x6 image

L
A.Bevan \GQ_‘:;I Queeﬂ |\/|al’y

University of London

INTRODUCTION TO MACHINE LEARNING 59

CONVOLUTION LAYERS

» If you use an M x M filter on an N x N image, the convolved
image is smaller than the original.

This illustration uses a stride of |
' 1; so the conv filter is applied
to the input image with a shift |
of 1 pixel atatimeinXandY. |

» <

»X 8x8image 3x3 filter 6x6 image

L
A.Bevan \GQ_‘:;I Queeﬂ |\/|al’y

University of London

m
INTRODUCTION TO MACHINE LEARNING 60

CONVOLUTION LAYERS

» (M-1)/2 pixels are lost from the border of the input image in
order to create the convolution image.

Image Size Filter Size Convolution image size
8x8 3x3 6x6
8x8 S5x5 Ax4
8x8 7x7 2%2
10x10 3x3 8x8
10x10 5x5 6x6
10x10 7x7 Ax4
10x10 7% 2x2 ,‘IMion usés a stri » |

! _ e ———

» An NxN image becomes a (N-M+1) x (N-M+1) image*.

» Repeatedly convoluting the image reduces the dimensionality
of the feature space; which can be undesirable.

b
*The border is both sides of the image so you loose (M-1)/2 pixels twice; once for each side. A.Bevan ¥Qf Queen Mary

University of London

INTRODUCTION TO MACHINE LEARNING 61

CONVOLUTION LAYERS: PADDING

» The dimensional reduction of feature space can be
mitigated by padding the original image with a border of

width (M-1)/2 pixels.

» The values of the border padding are set to zero (no
information provided to the convolution layer).

» Now the original image can be convolved with the filter
any number of times (within resource limitations) without
reducing the dimensionality of the input feature space
that contains non-trivial information.

nnnnnnnnnnnnnnnnnn

" N
INTRODUCTION TO MACHINE LEARNING 62

CONVOLUTION LAYERS: FILTERS

» Each convolution filter is tuned to identify a given shape
when scanning through an image.

» These can be edge, line or other shape filters.

» By using a set of convolution filters, one can pick out a set
of different features in an image.

» The weights for these filters are usually initialised
randomly using a truncated Gaussian distribution with

output >0.

» This is to avoid negative weights.

nnnnnnnnnnnnnnnnnn

" N
INTRODUCTION TO MACHINE LEARNING 63

CONVOLUTION LAYERS: POOLING

» The dimensionality of the features in a convolutional layer is large; numerically it is
convenient to reduce the dimensionality for further processing.

» High resolution images are not required to be able to identify shapes of objects;

» Can make a lower resolution representation and still reach the same conclusion.

» Pooling is a mechanism that allows you to achieve this.I"]

» Define a filter size for pooling (e.g. 2x2) and then perform an operation on the pixels to

compute:

» Maximum value (max pooling): useful to suppress noise when information is
sparse and the number of pixels having a significant value is expected to be low.

» Average value (average pooling): Averaging pixels values can give a smaller
variance on the information contained in those pixels.

» Ref.[1] provides an analysis of these two approaches.

: : o &
[1] Boureau, Y. L., Ponce, J., & Lecun, Y. (2010). A theoretical analysis of feature pooling in visual YaY
recognition. In ICML 2010 - Proc., 27th Int. Conf. on Machine Learning (pp. 111-118) A.Bevan céQ—° g‘ggﬁmnMary

EEe :_=}=,1;‘_:.' :
INTRODUCTION TO MACHINE LEARNING 64

CONVOLUTION LAYERS: POOLING

» The pooling process is applied to each individual part of
the image (i.e. dimensional reduction)

Average pooling is just applying the following to
each set of pixels.

f:%zxi

l

Max pooling is equivalent but taking

f = max x;

The output is a smaller image.

L
A.Bevan \c“__'l Queeﬂ |\/|al’y

University of London

— =:_§‘.,=;;1:._’ : ’
INTRODUCTION TO MACHINE LEARNING

CONVOLUTION LAYERS: POOLING

65

» The pooling process is applied to each individual part of

the image (i.e. dimensional reduction)

nnnnnnnnnnnnnnnnnn

e S

b
INTRODUCTION TO MACHINE LEARNING 66

CONVOLUTION LAYERS: POOLING

» The pooling process is applied to each individual part of
the image (i.e. dimensional reduction)

— =:_§‘.,=;;1:._’ : ’
INTRODUCTION TO MACHINE LEARNING ;

CONVOLUTION LAYERS: POOLING

» The pooling process is applied to each individual part of
the image (i.e. dimensional reduction)

and so on...

nnnnnnnnnnnnnnnnnn

INTRODUCTION TO MACHINE LEARNING 68

CONVOLUTIONAL NEURAL NETWORK (CNN) ARCHITECTURES

» The simplest convolutional neural network (CNN) architecture is:

FULLY

CONVOLUTION
LAYER WITH

SET OF CONNECTED
CONVOLUTION LAYER (MLP-LIKE
SOMESETOF [mmmmrall IMAGES: ONE PER Mlammmedll STRUCTURE) WITH
FILTERS FILTER AT LEAST ONE
PERCEPTRON

» The convolution layer takes an image and applies a set of k
filters to the image.

» Each filter results in a new convolution image as its output.

» All of the features in all of the convolution images are combined
to make a final combined output of the information.

b
A.Bevan YO Queen Mary

University of London

R ‘ e
INTRODUCTION TO MACHINE LEARNING 69

CONVOLUTIONAL NEURAL NETWORK (CNN) ARCHITECTURES

» We can include multiple convolution layers layers that may
add to the information extracted from the image.

» We can add pooling layers to reduce the dimensionality.

» e.g. MNIST: handwritten numbers from 0 to 9.

Hdd Hdd
O utputs
32@28 x28 32@14 x14 64@14 x14 64@7 x7 3136 1024
Max-pooling o ion l ng Fully Fully
S 5 kernel 2x2 kernel nel 2 el connected = connec

o 28x28 input image (e.g. MNIST example).

e 2 convolution layers using 5x5 filter kernels.

e Each convolution layer followed by a 2x2 max-pooling layer.

o 2 fully connected layers leading to 10 outputs. A. Bev \Qs’ Queen Mary

nnnnnnnnnnnnnnnnnn

INTRODUCTION TO MACHINE LEARNING 70

CONVOLUTIONAL NEURAL NETWORK (CNN) ARCHITECTURES
» MNIST

» Standard library of hand written numbers for
benchmarking algorithms: 1, 2, 3,4,5,6,7, 8,9, 0.

» Images are 28x28 pixels (greyscale).

» Several examples are shown below

Example: 2 Label: 4

[1] Neural Computation, Volume 22, Number 12, December 2010
http://yann.lecun.com/exdb/mnist/

nnnnnnnnnnnnnnnnnn

https://arxiv.org/abs/1003.0358
http://yann.lecun.com/exdb/mnist/

e S

Ebs
INTRODUCTION TO MACHINE LEARNING 71

CONVOLUTIONAL NEURAL NETWORK (CNN) ARCHITECTURES & INPUT DATA

» So far we have focussed on monochrome images with a
single number representing each pixel.

» What about colour images?
» These have 3 numbers (r, g, b) describing each pixel.

» Trivial to extend the convolution and pooling processes to
work on images of some arbitrary depth D (=3 for colour).

» 3-fold increase in weight parameters to determine.

» e.g. CFAR10 benchmark training setl1!.

B
[1] https://www.cs.toronto.edu/~kriz/cifar.html A.Bevan \@‘Q_gl Queen Mary

nnnnnnnnnnnnnnnnnn

https://www.cs.toronto.edu/~kriz/cifar.html

o s
o 2
B . iR
M N

INTRODUCTION TO MACHINE LEARNING

72

CONVOLUTIONAL NEURAL NETWORK (CNN) ARCHITECTURES & INPUT DATA
» CFAR 10 examples:

[1] https://www.cs.toronto.edu/~kriz/cifar.html

airplane %.% V..='~i
automobile EH'!'H‘
e Sml NES ¥ EEE
SR o Rl o LB
ceer [I 8 0 P Y I R
SO | 0 [o | SR
wog I I O 1 I O A S
horse ..mm-"n
ship =[S T =P
dELREESHEN

truck

nnnnnnnnnnnnnnnnnn

https://www.cs.toronto.edu/~kriz/cifar.html

INTRODUCTION TO MACHINE LEARNING 73

CONVOLUTIONAL NEURAL NETWORK (CNN) ARCHITECTURES & INPUT DATA

The DNN selects the image class with the highest likelihood.

Input images have a colour depth (Nchannels) of 3

Sl = | A s 3\ N : B otz
’ 2 5 ----__- .~.‘\.~:..-- >4 "“f",’, 3 ore -1
- e 192 197 138 2048 2048 \Uense
48 128 R

N A N3 13 \ 13
5 N 3v ! 3 | - R
Lo “q---c Ty - > | »
i 57 3| \ T3 13 dense | |dense
"""" =, 3
155 J-- 1000
Y 192 192 128 Max
: 2048 2
Stride Max 128 Max pooling 2048
“of 4 pooling pooling
3 48

- -O-P) " -B
When AlexNet is processing an image, this is what is happening at each layer.

A. Krizhevsky, I. Sutskever, G. Hinton, (2017-05-24), Communications of the ACM. 60 (6): 84-90

[J
WO
https://dl.acm.org/doi/10.1145/3065386 a.Bevan %O Queen Mary

University of London

https://dl.acm.org/doi/10.1145/3065386

by

INTRODUCTION TO MACHINE LEARNING 74

CONVOLUTIONAL NEURAL NETWORK (CNN) ARCHITECTURES & INPUT DATA

» More abstract problems can be addressed in the same way.

» Some examples are given below:

» Transient searches can be addressed by stacking images
together to form an image of depth D.

» Tracking problems can be addressed by stacking
measurement data from successive layers.

» More arbitrary problems can be addressed by feeding
pixelised images of 2D correlation plots between pairs of
input “features”. Stacks of these can be fed into a CNN.

nnnnnnnnnnnnnnnnnn

INTRODUCTION TO MACHINE LEARNING 75

EXAMPLE: PARTICLE IDENTIFICATION AT MICROBOONE

» MicroBooNE LAr TPC produces images that need to be
interpreted in terms of the underlying neutrino interaction
physics:

» 3 different views of the same v interaction.

» Use existing software available from the web with
many of the techniques discussed in these lectures.

/
ZZ //
22 A
gy AN
? /// 1
{ / ’ // Ve
I % ,
: /V // /
LA / Y
/ /
input feature map

Mus 3469 Event 28734, Octeber 21, 2018 &
B YaY)
MicroBooNE Collaboration, JINST 12 (2017) no.03, P03011 A.Bevan WL Queen Mary

nnnnnnnnnnnnnnnnnn

INTRODUCTION TO MACHINE LEARNING

76

EXAMPLE: PARTICLE IDENTIFICATION AT MICROBOONE

» MicroBooNE LAr TPC produces images that need to be
interpreted in terms of the underlying neutrino interaction

physics:

puBooNE

Purpose

» 3 different views of the same v interaction.

» Use existing software available from the web with
many of the techniques discussed in these lectures.

Used in Demonstrations

UBOONE

Software ref.

LArSoft (7]

uboonecode (8]

LAICV (9]
Caffe (10]

AlexNet (1]
HBOONE _ GoogLeNet [11]

Faster-RCNN [12]
Inception-ResNet-v2 [13]
ResNet [14]

Simulation and Reconstruction

Simulation and Reconstruction
Image Processing and Analysis
CNN Training and Analysis
Network Model

Network Model

Network Model

Network Model

Network Model

1-3
1-3
1-3
1-3
1,2
1

2

W N e

4, October 21

MicroBooNE Collaboration, JINST 12 (2017) no.03, P0O3011

b
A.Bevan YO Queen Mary

University of London

INTRODUCTION TO MACHINE LEARNING

EXAMPLE: PARTICLE IDENTIFICATION AT MICROBOONE

» MicroBooNE LAr TPC produces images that need to be
interpreted in terms of the underlying neutrino interaction

physics:

puBooNE

uBooN¥E

pBooNE

4, October 21

MicroBooNE Collaboration, JINST 12 (2017) no.03, P0O3011

77

» Image resolution matters for the performance of this

convolutional neural network.
Classified Particle Type

Image, Network

e [%]

y | %]

p %]

n %]

proton [%]|

HiRes, AlexNet
LoRes, AlexNet
HiRes, GooglLeNet
LoRes, GooglLeNet

73.6 £0.7
64.1 £ 0.8
77.8 £0.7
74.0 £ 0.7

81.3 0.6
77.3 £ 0.7
83.4 £ 06
74.0 £ 0.7

84.8 0.6
75.2 0.7
89.7 0.5
84.1 £0.6

73.1 £0.7
74.2 £ 0.7
71.0 £ 0.7
75.2 £ 0.7

87.2 0.5
85.8 0.6
91.2 0.5
84.6 0.6

Table 2. Five particle classification performances. The very left column describes the image type

and network where HiRes refers to a standard 576 by 576 pixel image while LowRes refers to

a downsized image of 288 by 288 pixels. The five remaining columns denote the classification

performance per particle type. Quoted uncertainties are purely statistical and assume a binomial

distnibution.

b
A.Bevan YO Queen Mary

University of London

GENERATIVE ADVERSARIAL
NETWORKS

University of London

RODUCTION TO MACHINE LEARNING 79
GENERATIVE ADVERSARIAL NETWORKS

» Szegedy et al found that small perturbations in the example were sufficient to lead
to example mis-classification.

» The inclusion of some training example that has a small amount of noise added
to it resulting in a change in classification is counter to the aim of obtaining a
generalised performance from a network.

From Szegedy et al,

Correctly classified image Perturbation of image Incorrectly classified resultant image

Szegedy et al, ICLR, abs/1312.6199 +
A.B W)
Goodfellow et al, CoRR, abs/1412.6572, arXiv:1406.2661 evan WY Queen Mary

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1406.2661

INTRODUCTION TO MACHINE LEARNING 80

GENERATIVE ADVERSARIAL NETWORKS

» Szegedy et al found that small perturbations in the example were sufficient to lead
to example mis-classification.

» The inclusion of some training example that has a small amount of noise added
to it resulting in a change in classification is counter to the aim of obtaining a
generalised performance from a network.

From Goodfellow
et al,

+.007 x —
. xr +
esign(VyJ (0, x,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Szegedy et al, ICLR, abs/1312.6199 +
A.B WO
Goodfellow et al, CoRR, abs/1412.6572, arXiv:1406.2661 AN ek UQuetﬁrJI}Aary

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1406.2661

PN .

INTRODUCTION TO MACHINE LEARNING

GENERATIVE ADVERSARIAL NETWORKS

» Adversarial examples with small perturbations in the input are difficult for networks to
classify because of their linear nature in high dimensional feature spaces.

» e.g.for w'x wT(w + 1) alarge value of dim(x) will result in a large change in the
contribution of the perturbed dot product.

» Adversarial training relies on a modification of the cost function with the intention that
the use of adversarial examples in training regularise the optimisation process by
identifying flaws in the model that is being learned.

» This in turn leads to an improved training performance.

» Exploiting the nature of adversarial examples allowed Goodfellow et al., to reduce
the error rate for image classification with MNIST data; beyond the benefits of using

dropout.

» The interpretation of this procedure is that one is “minimising the worst case error
when the data are perturbed by an adversary”.

Szegedy et al, ICLR, abs/1312.6199 +
A.B W)
Goodfellow et al, CoRR, abs/1412.6572, arXiv:1406.2661 YA =t gvligyeofrlnMary

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1406.2661

Ebw

INTRODUCTION TO MACHINE LEARNING 82

GENERATIVE ADVERSARIAL NETWORKS

» The idea behind adversarial networks is to find some way to present adversarial
examples alongside data to improve the ability of the model to recognise both the
data and its adversarial counterpart.

» Train two models simultaneously:
» G: a generative model (the model used to generate adversarial examples for
training)
» D: a discriminative model (the model used to make a prediction that an
example is either data or from the generative model)
» Train D to maximise the rate of correct outcomes for training examples and

samples from the generative model.
» Train G to minimise In(1—- D[G(2z)])*.

» Over some number of training epochs the generative model G will improve so that
it mimics D better.

‘ * |t can be problematic to train G in early epochs as it is possible for D to reject samples from G with
4‘ high confidence; so for early epochs one can maximise In(D[G()]) to overcome this limitation.

Szegedy et al, ICLR, abs/1312.6199 N
Goodfellow et al, CoRR, abs/1412.6572, arXiv:1406.2661 also see Goodfellow's Neural Information A.Bevan \G:Qsl Queeﬂ Mal’y
Processing Systems proceedings on Generative Adversarial Networks: arxiv:1701.00160. University of London

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1701.00160

INTRODUCTION TO MACHINE LEARNING 83

Adversarial Nets Framework
D tries to make
D(G(z)) near 0,
D(x) tries to be G tries to make
near 1 D(G(z)) near 1
lefelentlable
function D
X sampled from
data

D is the discriminator network
G is the generator network

x is the input example

z is some input noise

Differ entlable
function ¢

Input noise z

x sampled from
model

M N

(Goodfellow 2016)

L
A.Bevan \G,Qsl Queen Mary

Goodfellow’s Neural Information Processing Systems proceedings: arxiv:1701.00160. ()5
University of London

http://www.iangoodfellow.com/slides/2016-12-04-NIPS.pdf
https://arxiv.org/abs/1701.00160

e S

b
INTRODUCTION TO MACHINE LEARNING 84

GENERATIVE ADVERSARIAL NETWORKS

» Use two sets of examples to train: training examples and generated noise
examples.

» Simultaneously optimise the two networks in a combined loss function as a
min-max game (zero sum) to identify the saddle point corresponding to
minimising the loss contribution from the discriminator while maximising the
ability of the generator to fake the data.

1 1
J(D) _iEm,\,pdm log D(x) — iEz log (1 — D (G(z)))
JG) — _ g(D)

» This allows us to optimise the model parameters for the discriminator, 8,
and generator, §'©.

» Use normal optimisation algorithms (e.g. ADAM or some other stochastic
gradient descent algorithm).

o
Goodfellow’s Neural Information Processing Systems proceedings: arxiv:1701.00160. A.Bevan \@:Q_al Queen l\/lal’y

University of London

https://arxiv.org/abs/1701.00160

INTRODUCTION TO MACHINE LEARNING 85

GENERATIVE ADVERSARIAL NETWORKS

» GAN's are difficult to train, compared with other simpler models (this is
simultaneous training of two models).

» e.g.Spotthe generated image example:

» A well written discussion of GANSs in the context of HEP can be found in:
Konstantin and Shyamsundar https://arxiv.org/abs/2002.06307.

b
Karras et al., ICLR 2018 arXiv:1710.10196 A.Bevan %Q) Queen Mary

University of London

https://arxiv.org/abs/2002.06307
https://arxiv.org/abs/1710.10196

