Observation of Photon-Induced *W* Boson Pair Production

HEP Seminar, QMUL

Philip Sommer

University of Sheffield

12.11.2020

Introduction		

Introduction

- Recently, ATLAS published a set of landmark results
- Using the LHC as a photon collider

Previous or similar studies:

$\gamma\gamma \to \ell\ell$	Phys. Lett. B 749 (2015) 242	<i>pp</i> @ 7 TeV
$\gamma\gamma \to WW$	Phys. Rev. D 94 (2016) 032011	<i>pp</i> @ 8 TeV
$\gamma\gamma \to \mu\mu$	Phys. Lett. B 777 (2018) 303	<i>pp</i> @ 13 TeV
$\gamma\gamma ightarrow \mu\mu$	Phys. Rev. Lett. 121 (2018) 212301	PbPb @ 5.02 TeV
$\gamma\gamma \to \gamma\gamma$	Phys. Rev. Lett. 123 (2019) 052001	PbPb @ 5.02 TeV
$\gamma\gamma \to \gamma\gamma$	arXiv:2008.05355 (new!)	PbPb @ 5.02 TeV
$\gamma\gamma \to \ell\ell$	arXiv:2009.14537 <mark>(new!)</mark>	<i>pp</i> @ 13 TeV

C Physics - Technology - Community - In focus Magazine

Jobs | 🎔 | 🔍

f 🖌 🖂 🖨

HIGGS AND ELECTROWEAK | NEWS

The LHC as a photon collider

A report from the ATLAS experiment

Future forward Part of the ATLAS forward-proton spectrometer. Credit: ATLAS collaboration

Protons accelerated by the LHZ generate a large flux of quast-real highenergy photons that can interact to produce particles at the electroweak scale. Using the LHZ is a photon collider, the ATLAS collaboration announced a set of landmark results at the 40th international Conference on High Energy Physics last week, among which is the first observation of the photo-production of Webson pairs.

As it proceeds via trilinear and quartic gauge-boson vertices involving two W bosons and either one or two photons, the production of a pair of W bosons from two photons ($\gamma\gamma \rightarrow WW$) tests a longstanding prediction

- New results report the production of particles at the electroweak mass scale from photons
- With $\gamma\gamma \rightarrow WW$ serving as a fundamental test of electroweak theory
- Utilising the LHC run-2 pp dataset

Theory			
000000	0000000000	0000	0

Part I: The Theory

	Theory ●000000		
The Standa	rd Model		

- The Standard Model describes the fundamental constituents of matter and their interactions
 - strong and electroweak (EW) interaction
- Rich variety of interactions derived from a rather simple set of symmetries
- Electroweak symmetry is broken
- \rightarrow Mediators of the electroweak force have mass
- Self-interactions of electroweak gauge bosons
 - Quantum corrections at EW mass scale (probed in W/Z precision measurements)
 - Large effects at highest energies
- At the LHC we can test the electroweak theory at highest energies

 $\rightarrow W^+, W^-, Z, \gamma$

	Theory ○●○○○○○	Measurement 000000000000	Future 0000	
Electroweak	Theory			

- Gauge couplings arise from the SU(2) potential term $\mathcal{L} = -\frac{1}{4}W^a_{\mu\nu}W^{\mu\nu}_a$, with the field strength tensor $W^a_{\mu\nu} = \partial_\mu W^a_\nu \partial_\nu W^a_\mu gf_{abc}W^b_\mu W^c_\nu$
- It generates cubic and quartic couplings

$$\begin{split} \mathcal{L}_{3} &= i e_{V=\gamma,Z} \left[W_{\mu\nu}^{+} W^{-\mu} V^{\nu} - W_{\mu\nu}^{-} W^{+\mu} V^{\nu} + W_{\mu}^{+} W_{\nu}^{-} V^{\mu\nu} \right] \\ \mathcal{L}_{4} &= e_{W}^{2} \qquad \left[W_{\mu}^{-} W^{+\mu} W_{\nu}^{-} W^{+\nu} - W_{\mu}^{-} W^{-\mu} W_{\nu}^{+} W^{+\nu} \right] \\ &+ e_{V=\gamma,Z}^{2} \left[W_{\mu}^{-} W^{+\mu} V_{\nu} V^{\nu} - W_{\mu}^{-} Z^{\mu} W_{\nu}^{+} A^{\nu} - W_{\mu}^{-} A^{\mu} W_{\nu}^{+} Z^{\nu} \right] \\ &+ e_{\gamma} e_{Z} \left[2 W_{\mu}^{-} W^{+\mu} Z_{\nu} A^{\nu} - W_{\mu}^{-} Z^{\mu} W_{\nu}^{+} A^{\nu} - W_{\mu}^{-} A^{\mu} W_{\nu}^{+} Z^{\nu} \right] \end{split}$$

With precise predictions of the coupling strength:

 $e_{\gamma} = g \sin \theta_W, e_W = \frac{e_{\gamma}}{2\sqrt{2} \sin \theta_W}$ and $e_Z = e_{\gamma} \cot \theta_W$

- They always involve a pair of W bosons, there are no neutral vertices
- Heavy gauge bosons also couple to the Higgs boson

$$\mathcal{L}_{\text{Higgs}} = rac{m_{W}^{2}}{v^{2}} W_{\mu}^{+} W^{-\mu} h^{2} + rac{m_{Z}^{2}}{v^{2}} Z_{\mu} Z^{\mu} h^{2}$$

Theory 00●0000		

Gauge Cancellations

- Gauge-boson self interactions play a crucial role for the renormalisability of the electroweak theory
- Large cancellations of divergences arising in individual diagrams are exact if couplings take the values of the SM
- → Diboson measurements are a sensitive probe of the inner structure of the electroweak symmetry

- In processes involving quartic couplings, the Higgs boson is governing the high energy behaviour
- ... if only W and Z bosons are involved

Theory 000000		

Vector-boson Scattering

- Measurements of processes with quartic electroweak couplings have already been established
- Electroweak diboson production, V Vjj
- luction, V Vjj
- The same final state can be produced in:
 - purely electroweak interactions involving only cubic and quartic self interactions
 - purely electroweak interactions without self interactions
 - processes involving both strong and electroweak interactions
- Electroweak production has characteristic signature of vector-boson scattering
- They are amongst the rarest reactions measured at the LHC so far ($\sigma = O(1 \text{ fb})$)

Theory 0000●00		

Experimental Status

 Electroweak V Vjj production has been experimentally confirmed for ZZjj, WZjj, W[±]W[±]jj, Wγjj (and there's strong evidence for Zγjj)

Theory 00000●0		

Photon-induced Processes

- Boosted charged particles are an intense source of "quasi-real" photons (Equivalent Photon Approximation)
- ► Longitudinal components of \vec{E} and \vec{B} vanish for $v \to c$

Lead-lead vs proton-proton:

- Many studies of photon-induced processes use heavy-ion collisions
- Photon luminosity scales with ~ Z⁴
- Maximum photon energy $\sim \gamma/R$ (uncertainty principle)
- \rightarrow Use *pp* data to produce particles at electroweak mass scales or higher

Theory 000000●		

Types of Photon-Photon Reactions

- In practise, the photon radiation can lead to a breakup of the photon
- Factorisation into elastic form factors and DIS structure functions (see e.g. LUXqed approach, JHEP 12 (2017), 046)
- For elastic production, only, the protons stay intact and no particles except for W boson decay products are produced
- → Measurement maximizes acceptance of elastic production, requiring no further *reconstructed* particles
 - Rescattering of proton can cause loss of signal

	Measurement		
000000	00000000000	0000	0

Part II: The Measurement

	Measurement ●0000000000	

Analysis in a Nutshell

Experimental Signature:

- exactly one electron and muon with opposite electric charge
- ▶ p_T(*ll*) > 30 GeV, m_{ℓℓ} > 20 GeV
- no charged particles associated with the primary interaction vertex

Experimental Challenges:

- In a typical ATLAS event we have a primary interaction vertex, and particles from the hard interaction, the proton fragmentation and additional *pp* interactions
- The analysis requires detailed understanding of:
 - vertex reconstruction
 - modelling of signal
 - the pileup density and multiplicity
 - underlying event of background processes

	Measurement 000000000000	

un] (^op)

from IDTR-2015-007

Track Reconstruction

heam A

from Andi Salzburger

- Accurately reconstructing as many charged-particle tracks as possible is key!
- Innermost tracking layer at r = 33.5 mm (pixel size: $50 \times 250 \ \mu m^2$, intrinsic spacial resolution: $10 \times 75 \ \mu m^2$)

measurements: position m, error o(m), features fa

beam B

Initial particle parameters:

position x, momentum p, charge g

Tracks for analysis are selected with $d_0 < 1 \text{ mm}$ and $z_0 < 1 \text{ mm}$

 $(d_0, z_0, \phi, \theta, q/p)$

from IDTR-2015-007

0000000 00000000 0000 0		Measurement		
	000000	0000000000	0000	0

Track Selection

- Tracks are the largest consumer of CPU in ATLAS reconstruction, and of disk space
- Only tracks with p_T > 500 MeV are available for analysis

	Measurement 000●00000000	

Vertex Reconstruction

- Usually, the interaction vertices are reconstructed from charged-particle tracks in the inner detector
- The vertex with the largest $\sum p_T^2$ is chosen as the primary vertex
- → Not optimal for photon-induced processes
- Instead, leptons are used to reconstruct the interaction vertex:

$$z_{\rm vtx}^{\ell\ell} = \frac{z_{\ell_1} \sin^2 \theta_{\ell_1} + z_{\ell_2} \sin^2 \theta_{\ell_2}}{\sin^2 \theta_{\ell_1} + \sin^2 \theta_{\ell_2}}$$

where $\sin^{-1} \theta_{\ell}$ parametrises the uncertainty of the measured z_{ℓ} position

- This vertex is unbiased by close-by pileup tracks
- and *more efficient* than the usual $\sum p_T^2$ criterion

	Measurement 0000000000	

Pileup Challenge

	Measurement 000000000000	

Pileup Modelling

- The probability of finding a pileup track within 1 mm of the vertex is 47.4%
- \rightarrow Large source of efficiency loss
- Measured from several z-positions in Drell-Yan events, weighted with beam-spot distribution

 Small differences between data and simulation are used as a correction, after correcting the beam-spot size

	Measurement 00000000000	

Background Modelling

- An accurate estimation of the backgrounds relies on the modelling of the underlying event
- Dominated by low-p_T, non-perturbative physics

- The number of charged particles is measured in Drell-Yan events
- Double differentially in n_{ch} and $p_T(ll)$
- Separately for all parton shower models used in the analysis

	Measurement		
000000	00000000000	0000	0

Modelling of $qq \rightarrow WW$ Production

- ▶ Underlying event corrections derived in Drell-Yan events are used to correct $qq \rightarrow VV$ events, as a function of n_{ch} and $p_T(VV)$
- Pythia8 eigentune vars., Herwig7 and Sherpa parton-shower models agree within 1% ... except for n_{track} = 0

Differences are the largest source of uncertainty in the measurement (with the $qq \rightarrow VV$ yield estimated from the average and envelope of the highest and lowest number)

	Measurement 00000000000000	

Signal Modelling

- No complete simulation of γγ → WW available (or have only recently become available)
- In particular, no rescattering of the proton
- \rightarrow Measure missing components in $\gamma\gamma \rightarrow \ell\ell$
- Using elastic contributions for signal predictions, only

$$\beta_{\gamma\gamma \rightarrow \ell\ell} = \frac{N_{\text{data}} - N_{\text{bkg}}}{N_{\gamma\gamma \rightarrow \ell\ell}^{\text{elastic}}} = 3.59 \pm 0.15 \text{ (stat.+syst.)}$$

• Applicability to $\gamma\gamma \rightarrow WW$ ensured with $m_{\ell\ell} > 160 \text{ GeV} \sim 2 \cdot m_W$ (and a generous uncertainty)

This approach assumes that the fraction of elastic and dissociative components are the same in $\gamma\gamma \rightarrow \ell\ell$ and $\gamma\gamma \rightarrow WW$ events, for a given $m_{\gamma\gamma}$

	Measurement 000000000000	

The Observation

- Signal extracted in a profile likelihood fit, using
 - ▶ four bins with $p_T(ll) < 30$ GeV or $p_T(ll) > 30$ GeV, and $1 \le n_{track} \le 4$ or $n_{track} = 0$
 - one bin for the signal modelling correction, $n_{\text{track}} = 0$ and $m_{\ell\ell} > 160 \text{ GeV}$
 - ▶ four free parameters, the normalisations of $\gamma\gamma \rightarrow WW$, $\gamma\gamma \rightarrow \ell\ell$, Drell-Yan and $qq \rightarrow WW$
- 307 candidate events are selected in data where 127 are expected from background

The background-only hypothesis is rejected with 8.4 σ (6.7 σ expected)

	Measurement 0000000000	

Fiducial Cross Section

• The fiducial cross section ($n_{ch} = 0$ + kinematic requirements) is measured to be

 $\sigma_{\rm meas.} =$ 3.13 \pm 0.31 (stat.) \pm 0.28 (syst.) fb

- Largest sources of uncertainty
 - Stat. uncertainties in the backgrounds
 - Background modelling
 - Signal modelling (dissociative contributions)
- Compared to our "expectation"

 $\sigma_{\text{elastic}} \cdot \beta_{\gamma\gamma \to \ell\ell} = 2.34 \pm 0.27 \text{ fb}$

 A standalone prediction from Madgraph with MMHT2015qed PDF

$$\sigma_{\rm theo.} = 4.3 \pm 1.0$$
 (scale) ± 0.12 (PDF) fb

This value needs to be corrected for rescattering effects ranging between 0.65 and 0.82

Source of uncertain	ty	Impact [%]
Experimental	•	
Track reconstru Electron energ Muon moment Misidentified I Background, st	uction y scale and resolution, and efficiency um scale and resolution, and efficiency eptons tatistical	1.1 0.4 0.5 1.5 6.7
Modelling		
Pile-up modell Underlying-eve Signal modelli WW modelling Other backgrou	ing ent modelling ng g unds	1.1 1.4 2.1 4.0 1.7
Luminosity		1.7
Total		8.9
Data / Pred. 9°0 17 17 19 00 00 00 00 00 00 00 00 00 00 00 00 00	ATLAS Data F = 13 F2(, 139 B ⁻¹) 7WV - 0, n ⁺ 30 GeV - 0 = 0, n ⁺	

23/29

		Future	
0000000	0000000000	0000	0

Part III: The Future

		Future	
000000	00000000000	0000	0

ATLAS Forward Proton Detectors

- The AFP spectrometer is among newest additions to ATLAS (installed between 2016 and 2017)
- Direct detection of scattered protons that leave the interaction intact
- Reconstruction of relative proton energy loss from the deflection in LHC magnetic field

$$\xi = 1 - E_{
m scattered}/E_{
m beam}$$

with an acceptance of $0.02 < \xi < 0.1$

_8

10

 10^{2}

 10^{3}

10

m_[] [GeV]

cross-section measurements of photon-fusion processes

	Future	
	0000	

Standard Model Effective Field Theory

- Make use of Standard Model measurements to constrain new physics
- Quantify agreement of couplings with SU(2)×U(1) prediction
- Expand Standard Model Lagrangian with higher dimension (of energy) operators Q_i (supressed by powers of inverse energy scale 1/Λ)

$$\mathcal{L}_{\text{SM EFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_{i}^{\text{dim-6}}}{\Lambda^{2}} Q_{i}^{\text{dim-6}} + \sum_{i} \frac{C_{i}^{\text{dim-8}}}{\Lambda^{4}} Q_{i}^{\text{dim-8}}$$

(excluding lepton/baryon number violating operators)

 Only at dim-8 (or higher) there are operators which affect quartic but not cubic gauge couplings

				O _{M2}			
	Operator	O_{50}	O_{M0}	O _{M3}	O_{70}	075	
Vertex		O_{S1}	0м1	0м4	O_{T1}	<i>O</i> ₇₆	<i>O</i> ₇₈
	-	O ₅₂	O_{M7}	O_{M5}	O_{T2}	O_{77}	<i>O</i> 79
WWWW		- 1	1				
WWZZ		1	1	1	1	1	
WWZγ			1	1	1	1	
WWγγ			1	1	1	1	
ZZZZ		- 1	1	1	- 1	1	- 1
ZZZγ			1	1	1	1	- 1
ΖΖγγ			1	1	1	1	1
Ζγγγ					1	1	1
γγγγ					1	1	- 1

EFT parametrisation of O. Eboli, M.

Gonzalez-Garcia (arxiv:1604.03555)

	Future 000●	

Prospects for $\gamma \gamma \rightarrow WW$

► Forward proton tagging allows reconstruction of the *WW* system in $\gamma\gamma \rightarrow WW$ events

$$W = \sqrt{s\xi_1\xi_2} = m_{WW}$$

- ▶ With acceptance of 300 GeV < W < 1.5 TeV of double-tagged events
- Possibility to measure differential cross section as a function of $m_{\gamma\gamma}$
- \rightarrow Increased sensitivity for EFT interpretations in LHC run-3

		Summary •
Summany		

- > There is a vibrant and emerging physics program using the LHC as a photon collider
- Progress in experimental techniques allow use of high pileup pp data
- ► The production of two *W* bosons from two photons has been observed
- As it proceeds through quartic gauge couplings, it confirms a longstanding Standard Model prediction
- Have a look at our paper arXiv:2010.04019

		Summary

Backup

		Summary O

	Signal region		Control regions	
n _{trk}	n _{trk} =	= 0	$1 \le n_{trk}$	≤ 4
$p_{\mathrm{T}}^{e\mu}$	> 30 GeV	< 30 GeV	> 30 GeV	< 30 GeV
$\gamma\gamma \rightarrow WW$	174 ± 20	45 ± 6	95 ± 19	24 ± 5
$\gamma\gamma \rightarrow \ell\ell$	5.5 ± 0.3	39.6 ± 1.9	5.6 ± 1.2	32 ± 7
Drell–Yan	4.5 ± 0.9	280 ± 40	106 ± 19	4700 ± 400
$qq \rightarrow WW$ (incl. gg and VBS)	101 ± 17	55 ± 10	1700 ± 270	970 ± 150
Non-prompt	14 ± 14	36 ± 35	220 ± 220	500 ± 400
Other backgrounds	7.1 ± 1.7	1.9 ± 0.4	311 ± 76	81 ± 15
Total	305 ± 18	459 ± 19	2460 ± 60	6320 ± 130
Data	307	449	2458	6332

		Summary O

29/29

Introduction	Theory 0000000	Measurement 000000000000	Future 0000	Summary O
	E 20 <i>ATLAS</i> /s = 13 TeV 10 5	/, 139 fb ⁻¹	$ \begin{array}{c} 1.5 \\ -1.4 \\ 1.3 \\ -1.2 \\ -1.1 \\ -1.2 \\ -1.1 \\ -1.1 \\ -0.9 \\ -0.8 \\ -0.7 \\ -0.6 \\ 0.5 \\ \end{array} $	
	-150 -100	-50 0 50 100	150	

z [mm]

		Summary O

