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The On/Off Problem

Manchester, England 
1974 – 1980

ON/OFF Problem

Grenoble, France 
1982 – 1986

ON/OFF Problem

Astronomy and particle physics share common statistical problems of
which the On/Off problem is one of the most important.

The ON/OFF problem An observation is made in one region called the
ON-source (or signal) region and an independent observation is made in
another region called the OFF-source (or background) region.
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The On/Off Problem

The On/Off problem1 in astronomy and particle physics2:

ON 

  N  

  s 

  ! b 

Poisson(N|s + ! b) 

OFF 

  B 

  b 

Poisson(B|b) 

Let τ be the ratio of ON-source to
OFF-source observation times of a
telescope, then for N and B photon
counts in the two observation
regions, respectively, the likelihood is
given by

p(D | s, b) = Poisson(N, s + τb) Poisson(B, b).

Question: What is the statistical significance of the signal s?

1T. P. Li and Y. Q. Ma, Analysis method for results in gamma-ray astronomy,
Astrophs. J. 272, 313 (1983).

2J. T. Linnemann, Measures of Significance in HEP and Astrophysics,
PHYSTAT2003, SLAC, Stanford CA, September 8-11, 2003; R. D. Cousins, J. T.
Linnemann, J. Tucker, Evaluation of three methods for calculating statistical significance
when incorporating a systematic uncertainty into a test of the background-only
hypothesis for a Poisson process, NIM A 595 480-501 (2008).
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The On/Off Problem Frequentist solution

The frequentist solution is well-known and widely used. One computes

ON 

  N  

  s 

  ! b 

Poisson(N|s + ! b) 

OFF 

  B 

  b 

Poisson(B|b) 

the profile likelihood

Lp(s) = p(D | s, b̂(s)),

where b̂(s) is the conditional
maximum likelihood estimate
(CMLE) of b, that is, the

maximum likelihood estimate (MLE) of b for a given value of s.

According to Wilks’ theorem3, when the counts are large the probability
density of the quantity F = −2 log Λ(0), where Λ(s) = Lp(s)/Lp(ŝ), is
p(χ2, ndf = 1) if the hypothesis s = 0 is true.

Since, F ≈ χ2, it follows that Z =
√
F indicates a Z -standard deviation

observation away from s = 0.

3See for example, G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae
for likelihood-based tests of new physics, Eur.Phys.J.C71:1554,2011.
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The On/Off Problem Bayesian solution

The Bayesian solution to the On/Off problem requires the probability
p(H1 |D) of the hypothesis s > 0, which we denote by H1.

ON 

  N  

  s 

  ! b 

Poisson(N|s + ! b) 

OFF 

  B 

  b 

Poisson(B|b) 

This probability is given by

p(H1 |D) =
B10 p(H1)

B10 p(H1) + p(H0)
,

where H0 denotes the
hypothesis s = 0.

The ratio B10 = p(D |H1) / p(D |H0) is called the Bayes factor. It is the
amount by which the probability of hypothesis H1 has changed relative to
that of hypothesis H0, given the observations.

p(H1) and p(H0) are the prior probabilities you assign to the respective
hypothesis. It is uncontroversial to argue that p(H1) = p(H0) assigns
equal weight to each!
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The On/Off Problem Bayesian solution

What is controversial is computing

p(D |H1) =

∫
ds

∫
db p(D | s, b)π(s, b),

=

∫ [∫
db p(D | s, b)π(b)

]
π(s|b) ds,

where we have used π(s, b) = π(s|b)π(b). Note also that

p(D |H0) =

∫
db p(D | s = 0, b)π(b) db.

Scientists can usually agree on the form of the evidence-based prior π(b).
But, the choice of the prior π(s|b) is controversial and therefore
problematic. The point is that in order for the Bayes factor
B10 = p(D |H1) / p(D |H0) to be well-defined, that is, not scaled by an
arbitrary constant, the prior π(s|b) must be proper, that is, it must satisfy∫

π(s|b) ds = 1.
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The On/Off Problem Bayesian solution

If your friendly neighborhood astrophysicist makes a precise prediction for
the signal, say s = s0, this prediction could be encoded in the (proper)
prior as follows

π(s|b) = δ(s − s0),

whereupon the probability of the hypothesis s = s0 can be computed using
the procedure on the previous slide. But, what if you don’t want to do
that?

At a conference in 2008 (PHYSTAT 2008), American statistician Jim
Berger introduced us to the intrinsic prior construction.

1. Compute p0(s |D) = p(D | s)π0(s)/p0(D), making sure that a prior is
used for which p0(D) =

∫
p(D|s)π0(s) ds <∞.

2. Before observations, the data data D are unknown. Therefore,
following standard Bayesian practice we marginalize (that is,
integrate) over unknowns. Assuming that the signal is negligible, we
compute πI (s) =< p0(s |D) >, where we average with respect to
p(D | s = 0).
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The On/Off Problem Bayesian solution

Example (Particle Physics: The Top Quark Discovery (1995, CDF, D0))

ON observation of N = 17 events with an effective OFF observation of
B = 40.1 events with a scale factor τ = 0.0947. At a signal of exactly
s = 14 events, p(D |H1) = 9.3× 10−2, while p(D |H0) = 3.0× 10−6.
Therefore, B10 = 3.1× 104, or ZBF =

√
2 logB10 = 4.5, which is a

Bayesian analog of a frequentist Z = 4.5σ effect.

However, if one prefers not to specify
a specific signal hypothesis, it would
be necessary to perform the integral
p(D |H1) =

∫
p(D | s)πI (s) ds over

the intrinsic prior, πI (s).
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But, what if you find Jim Berger’s reasoning unpersuasive?
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The Problem of Priors

Question: How can one construct a prior such that π(θ)dθ = π(λ)dλ?

Consider the separation between two densities p and q from the same
family, measured by the Kullback-Leibler (K-L) divergence

D(p, q) = Ex [log p(x |θ)/q(x |θ)]

between them. Notice that D(p, q) 6= D(q, p); therefore, D(p, q) cannot
be interpreted as a distance. But, when q = p(x |θ + dθ) it follows that

2D(p, q) =
∑
i

∑
j

gijdθidθj ,

where gij is called the Fisher Information matrix, which is given by

gij = Ex

[
∂ log p

∂θi

∂ log p

∂θj

]
.

All averages are with respect to p(x |θ).
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The Problem of Priors

From the theory of differential geometry, it follows that

dV =
√
detg

∏
i

dθi ≡
√

detg dθ,

is an infinitesimal invariant volume within the parameter space, by which
we mean

dV (θ) = dV (λ)

holds for different parameterizations θ and λ of the probability density p.

In the 1930s, Cambridge physicist Sir Harold Jeffreys suggested the choice
π(θ)dθ = dV (θ) for the prior whenever the only available information is
the form of the probability function p(x |θ) and the domain of its
parameters θ.

This prior, known as the Jeffreys prior, satisfies the desired property

π(θ)dθ = π(λ)dλ.
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The Problem of Priors

Myung et al.4 provide a beautiful interpretation of the

Jeffreys Prior

π(θ) dθ =
√

detg dθ,

gij = Ex

[
∂ log p

∂θi

∂ log p

∂θj

]
= −Ex

[
∂2 log p

∂θi∂θj

]
for probability function p(x |θ),

namely, it is the prior that assigns equal weight to probability densities
indexed by θ. That is, the Jeffreys prior is the flat prior in the space of
probability densities and is independent of the parameterization.

For 1-dimensional parameter spaces, as in the Poisson problem, this
invariant prior is widely accepted as the solution.

4I. J. Myung, V. Balasubramanian, and M. A. Pitt, Counting probability
distributions: Differential geometry and model selection, PNAS, vol. 97, 11171 (2000).

Harrison B. Prosper (FSU) Statistics in Astronomy October 22, 2020 14 / 33



The Problem of Priors

Alas, for the 2-parameter Gaussian p(x |µ, σ) = e−
1
2

(x−µ)2/σ2
/(σ
√

2π), the
Jeffreys prior is

π(µ, σ)dµdσ =
1

σ2
dµdσ.

Why “Alas”? Because this prior can yield very bad results. Indeed, the
recommended prior, which follows from work by the statisticians Bernardo
and Berger5, is

π(µ, σ)dµdσ =
1

σ
dµdσ.

Does this mean that the beautiful geometrical reasoning regarding priors is
ultimately worthless?

Not necessarily!

5For a physicist’s introduction see L. Demortier, S. Jain, HBP, Reference priors for
high energy physics, Phys. Rev. D 82, 034002 (2010).
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The Problem of Priors

What the difference between π(µ, σ) = 1/σ2 and π(µ, σ) = 1/σ is telling
us is that in more than one dimension, assigning equal weight to every
probability density is not necessarily sensible. We may be forced to weight
these densities differently. For the Gaussian density, the prior should be

π(µ, σ)dµdσ = w(µ, σ)dV (µ, σ) = w(µ, σ)
dµdσ

σ2
,

where w(µ, σ) is the weight assigned to each density. If we set
w(µ, σ) ∝ σ we obtain the prior that statisticians prefer.

Remarkably, the principle of maximum entropy of physicist Edwin Jaynes6

implies w(µ, σ) ∝ eS = e log(σ/σ0), where S is the entropy of the Gaussian.

In summary The general form of an invariant prior is

π(θ)dθ = w(θ)dV (θ) .

6E.T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106 (4)
620–630 (1957); Information theory and statistical mechanics, Phys. Rev. 108 (2)
171–190 (1957).
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Non-Identifiability

Consider the task of estimating the parameters a, b, c , and d , in the
following problem

y = a + b sin(cx + d).

This problem has 4 parameters. However, suppose that the amount of
data is such that it is difficult to estimate the coefficient b. In that case,
the effective number of parameters is closer to one.

A model in which some parameters cannot be identified uniquely, even
with perfect data, is said to be structurally non-identifiable. A structurally
identifiable model can become practically non-identifiable when using real
data, which are always noisy.

Complex non-linear models, such as the first-order coupled differential
equation models used in epidemiology, can be plagued7 with
non-identifiable parameters. Similar problems occur in astronomy and
particle physics.

7No pun intended!
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Non-Identifiability

In a 2002 paper, Spiegelhalter et al.8, suggested the following measure of
the effective number of parameters

P =< `(θ) > −`(θ̂),

where,

`(θ) = −2 log p(D | θ),

and the average is with respect to the posterior density p(θ |D).

Note that `(θ̂) ≈ χ2
K + C , where the number of degrees of freedom K is

lower by the effective number of parameters P. If we knew the true value
of `(θ) and, therefore, the number of degrees of freedom K0 prior to
fitting, then we could estimate the effective number of parameters using
P = K0 − K . However, we do not know `(θ). But, it can be estimated by
averaging `(θ) over all possible values of θ weighted by p(θ|D).

8D. J. Spiegelhalter, N. G. Best, B. P. Carlin, A. van der Linde, Bayesian measures of
model complexity and fit, J. R. Statist. Soc.B 64 Part 4, 583-639 (2002)
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Non-Identifiability

Counting the effective number of parameters in a model is a useful
diagnostic for flagging non-identifiability. We illustrate this using the
Union 2.1 Compilation of Type 1a supernova data by the Supernova
Cosmology Project9. The data comprise the redshift z and the distance
modulus µ, and associated uncertainty, for 580 supernovae.

Example (Fitting ΛCDM model to Type 1a Sn Data)

The matter/energy density for the ΛCDM model as a function of the scale
factor a of the universe is given by

Ω(a) =
ΩM

a3
+

1− ΩM − ΩΛ

a2
+ ΩΛ,

where ΩM , ΩΛ, and H0, the matter, vacuum energy, and Hubble constant,
respectively, are the free parameters of the model.

9http://supernova.lbl.gov
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Non-Identifiability

Example (Fitting ΛCDM model to Type 1a Sn Data)

Distance modulus:

µ = 5 log10[(1 + z) sin(
√
−(1− ΩM − ΩΛ) u(z)) /

√
−(1− ΩM − ΩΛ)]

− 5 log10(H0) + 5 log10(c) + 25,

where

u(z) ≡
∫ 1

1/(1+z)

da

a2
√

Ω(a)
.

We perform two fits: one with all the data points and another with only
10 data points. And we compute the effective number of parameters.
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Non-Identifiability
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Ω(a) = ΩM/a
3 + (1− ΩM − ΩΛ)/a2 + ΩΛ

ΩM = 0.28± 0.04
ΩΛ = 0.73± 0.05

χ2 / ndf = 562.2 / 577 = 0.974

P = 3.0

0.0 0.2 0.4 0.6 0.8 1.0

z

32

34

36

38

40

42

44

46

µ

Ω(a) = ΩM/a
3 + (1− ΩM − ΩΛ)/a2 + ΩΛ

ΩM = 2.59± 1.20
ΩΛ = 3.08± 1.28

χ2 / ndf = 3.5 / 7 = 0.496

P = 2.6

The effective number of parameters P behaves as expected. However, it
would be useful to study the stability of the Spiegelhalter et al. measure
when the sample size is small. It would also be of interest to understand
how it is related to model selection10.

10S. I. Vrieze, Model selection and psychological theory: A discussion of the
differences between the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC), Psychol Methods. 2012 June; 17(2): 228-243.
doi:10.1037/a0027127; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3366160/.
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Musings About Machine Learning

Machine learning (ML) has been used in astronomy and particle physics
for decades. However, the exponential rise in the development and use of
ML can be traced to a breakthrough that occurred in 2006.

In 2006, the field of machine learning suddenly became HOT when
Hinton, Osindero and Teh11 succeeded in training a deep neural
network (DNN) by initializing its parameters sequentially, layer by
layer. Each layer was trained to produce a representation of its inputs
that served as the training data for the next layer. Then the network
was tweaked using stochastic gradient descent.

This breakthrough was viewed as compelling evidence that the
training of DNNs requires careful initialization of parameters and
sophisticated training algorithms.

11G. E. Hinton, S. Osindero, and Y. Teh, A fast learning algorithm for deep belief
nets, Neural Computation 18, 1527-1554.
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Musings About Machine Learning

But, in 2010, a surprising counter example to the conventional
wisdom was demonstrated by Cireşan et al.12.

The authors trained deep neural networks to classify the handwritten
digits in the MNIST13 data set, which comprises 60,000
28× 28 = 784 pixel images for training and 10,000 images for testing.

Their model, with structure (784, 2500, 2000, 1500, 1000, 500, 10),
outperformed all other methods that had been applied to the MNIST
data set as of 2010. The error rate of this ∼12 million parameter
DNN was 35 images out of 10,000.

The lessons drawn were: 1) very deep models are useful, 2) huge amounts
of data are, however, needed to fit them, and 4) huge amounts of
computing is a must.

12Cireşan DC, Meier U, Gambardella LM, Schmidhuber J. ,Deep, big, simple neural
nets for handwritten digit recognition. Neural Comput. 2010 Dec; 22 (12): 3207-20.

13http://yann.lecun.com/exdb/mnist/
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ARTICLE
doi:10.1038/nature24270

Mastering the game of Go without 
human knowledge
David Silver1*, Julian Schrittwieser1*, Karen Simonyan1*, Ioannis Antonoglou1, Aja Huang1, Arthur Guez1,  
Thomas Hubert1, Lucas Baker1, Matthew Lai1, Adrian Bolton1, Yutian Chen1, Timothy Lillicrap1, Fan Hui1, Laurent Sifre1, 
George van den Driessche1, Thore Graepel1 & Demis Hassabis1

Much progress towards artificial intelligence has been made using 
supervised learning systems that are trained to replicate the decisions 
of human experts1–4. However, expert data sets are often expensive, 
unreliable or simply unavailable. Even when reliable data sets are 
available, they may impose a ceiling on the performance of systems 
trained in this manner5. By contrast, reinforcement learning systems 
are trained from their own experience, in principle allowing them to 
exceed human capabilities, and to operate in domains where human 
expertise is lacking. Recently, there has been rapid progress towards this 
goal, using deep neural networks trained by reinforcement learning. 
These systems have outperformed humans in computer games, such 
as Atari6,7 and 3D virtual environments8–10. However, the most chal-
lenging domains in terms of human intellect—such as the game of Go, 
widely viewed as a grand challenge for artificial intelligence11—require 
a precise and sophisticated lookahead in vast search spaces. Fully gene-
ral methods have not previously achieved human-level performance 
in these domains.

AlphaGo was the first program to achieve superhuman performance 
in Go. The published version12, which we refer to as AlphaGo Fan, 
defeated the European champion Fan Hui in October 2015. AlphaGo 
Fan used two deep neural networks: a policy network that outputs 
move probabilities and a value network that outputs a position eval-
uation. The policy network was trained initially by supervised learn-
ing to accurately predict human expert moves, and was subsequently 
refined by policy-gradient reinforcement learning. The value network 
was trained to predict the winner of games played by the policy net-
work against itself. Once trained, these networks were combined with 
a Monte Carlo tree search (MCTS)13–15 to provide a lookahead search, 
using the policy network to narrow down the search to high-probability  
moves, and using the value network (in conjunction with Monte Carlo 
rollouts using a fast rollout policy) to evaluate positions in the tree. A 
subsequent version, which we refer to as AlphaGo Lee, used a similar 
approach (see Methods), and defeated Lee Sedol, the winner of 18 inter-
national titles, in March 2016.

Our program, AlphaGo Zero, differs from AlphaGo Fan and 
AlphaGo Lee12 in several important aspects. First and foremost, it is 

trained solely by self-play reinforcement learning, starting from ran-
dom play, without any supervision or use of human data. Second, it 
uses only the black and white stones from the board as input features. 
Third, it uses a single neural network, rather than separate policy and 
value networks. Finally, it uses a simpler tree search that relies upon 
this single neural network to evaluate positions and sample moves, 
without performing any Monte Carlo rollouts. To achieve these results, 
we introduce a new reinforcement learning algorithm that incorporates 
lookahead search inside the training loop, resulting in rapid improve-
ment and precise and stable learning. Further technical differences in 
the search algorithm, training procedure and network architecture are 
described in Methods.

Reinforcement learning in AlphaGo Zero
Our new method uses a deep neural network fθ with parameters θ. 
This neural network takes as an input the raw board representation s 
of the position and its history, and outputs both move probabilities and 
a value, (p, v) =  fθ(s). The vector of move probabilities p represents the 
probability of selecting each move a (including pass), pa =  Pr(a| s). The 
value v is a scalar evaluation, estimating the probability of the current 
player winning from position s. This neural network combines the roles 
of both policy network and value network12 into a single architecture. 
The neural network consists of many residual blocks4 of convolutional 
layers16,17 with batch normalization18 and rectifier nonlinearities19 (see 
Methods).

The neural network in AlphaGo Zero is trained from games of self-
play by a novel reinforcement learning algorithm. In each position s, 
an MCTS search is executed, guided by the neural network fθ. The 
MCTS search outputs probabilities π of playing each move. These 
search probabilities usually select much stronger moves than the raw 
move probabilities p of the neural network fθ(s); MCTS may therefore 
be viewed as a powerful policy improvement operator20,21. Self-play 
with search—using the improved MCTS-based policy to select each 
move, then using the game winner z as a sample of the value—may 
be viewed as a powerful policy evaluation operator. The main idea of 
our reinforcement learning algorithm is to use these search operators 

A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in 
challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The 
tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were 
trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce 
an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game 
rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo’s own move selections and also 
the winner of AlphaGo’s games. This neural network improves the strength of the tree search, resulting in higher quality 
move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved 
superhuman performance, winning 100–0 against the previously published, champion-defeating AlphaGo.

1DeepMind, 5 New Street Square, London EC4A 3TW, UK.
*These authors contributed equally to this work.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

David Silver et al. Nature, vol. 550, 19 October 2017.

2.08× 10170
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Musings About Machine Learning

Almost every ML training algorithm can be cast as an optimization
problem whose goal is to minimize the average

R(f ) =
1

N

N∑
i=1

L(y , f (xi , θ)) + C (θ)

of a suitable loss function L(y , f ) subject to some constraint C (θ).

The key point to note is that this sum approximates the functional

R[f ] =

∫ [∫
dy L(y , f (x , θ) p(y , x)

]
dx ,

≡
∫

G (f ) dx ,

where p(y , x) is the probability density of the targets y and features x of
which the training data are a sample.
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Musings About Machine Learning

Example (Quadratic Loss: L(y , f ) = (y − f )2)

For the quadratic loss,

G (f ) =

∫
(y − f )2 p(y , x) dy

= p(x)

∫
(y − f )2 p(y |x) dy ,

δG

δf
= −2p(x)

∫
(y − f ) p(y |x) dy = 0,

which implies f (x , θ) =
∫
y p(y |x) dy , for some value of θ.

Conclusion If 1) the training data are sufficient and 2) f (x , θ) is
sufficiently flexible (i.e., ∃ an f (x , θ) such that the functional derivative
δG/δf reaches zero) and 3) we use the quadratic loss then f (x , θ) will
approximate the mean of the conditional density p(y |x).
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Musings About Machine Learning

Example (Quadratic Loss: Mapping Gaia Variable Star Data to 2-D)

Fit an autoencoder

Encoder Decoder*
*
*

*
*
*

! !

by minimizing the quadratic loss between the input to the encoder and the
output of the decoder in order to map the Gaia Data Release 1 data
x = ν,∆m,m,A2/A1, φ2 − 2φ1 for about 3,000 Cepheid and RRLyrae
stars to a 2-D space (z1, z2) ∈ R2. (See jupyter notebook for details.)

For the quadratic loss, f (x , θ) will approximate the integral∫
y p(y | x) dx =

∫
y δ(y − x) dx = x provided that the conditions on the

previous slide are met, irrespective of the details of the autoencoder
f (x , θ). (Note, by the way, that for autoencoders, the quadratic loss yields
functions that are unbiased estimates of the data x).
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Musings About Machine Learning

Example (Quadratic Loss: Mapping Gaia Variable Star Data to 2-D)

The blue dots are
identified in the Gaia
database as Cepheids,
while the red and green
dots are identified as
RRLyrae stars.

The three clusters were
found automatically.
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Musings About Machine Learning

There is a huge, and rapidly growing, number of ML models on the
market, and many many variations on stochastic gradient descent for
minimizing average loss functions.

However, these models, are ultimately approximating the same small set of
mathematical quantities, which is determined by the loss function.

The quality of the approximation, however, is determined both my the
flexibility of the model and the effectiveness of the minimization algorithm.
This observation is the main motivation for the frenetic search for better
ML models and algorithms.

Unfortunately, however, there seems to be very little work on the following
inverse problem: given the mathematical quantity to be approximated,
what average loss function should one minimize?
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Summary

I think it is helpful, from time to time, to see what’s happening in a
related field.

In astronomy, just as in particle physics, there has been an explosion
of developments in statistics over the past two decades and especially
since about 2010.

But, in spite of the wide variety of models and creative developments,
the underlying principles of statistics remain intact and many
fundamental problems have yet to be fully resolved. There is still a lot
of difficult work to do.

Thank you!
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