CASU@IRIS: enabling wide area survey science

Nicholas Walton et al Institute of Astronomy, University of Cambridge

Carina: Credit: ESO/ VPHAS/ CASU

Astronomical Data Intensive Science @ IoA CASU, Gaia, PLATO and AstroMedical

- Develop and run advanced data analysis pipelines for astronomical data
 - Science data fills major archives: e.g. ESO SAF, ESA Gaia Archive
 - CASU operational repository for internal science team releases
- Generation of efficient code
 - Design, implementation, testing, standards, code repositories
 - e.g. CASU code release
- Significant data management and data distribution
 - Interfaces, standards, documentation, hardware configuration and support
- · Collaboration in a range of project consortia, large and small
 - Space based: ESA / Ground based: ESO/ ING etc
- Participation in the science programs of the projects
 - Science survey team leadership and membership

CASU: Data for Data Intensive Science

Significant compute infrastructure in place

Installation in the APM includes:

- 20 racks
- 1500 cores
- 2 PB RAID disk
- All connected via 2x1Gbit links to the main UCam backbone
- Recent significant infrastructure upgrades (IMAXT/ WEAVE/ 4MOST/ LSST) to West Cambridge Data Centre)
- Pilot access to CASU@IRIS resources

IRIS @ CASU: Services in build 2020 Running pipelines and services in containers

Jupyter

- Jupyter allows for interactive data access and exploratory analysis close to where the data are located
- K <u>Dask</u> natively scales python, supports parallelism
 - <u>Docker</u> provides stable and reproducible environments in containers
 - <u>Kubernetes</u> (K8s) allows for deployment, scaling and management of containers in a cluster

docker

kubernetes

openstack

<u>OpenStack</u> manages large pools of compute resources

Applications running in containers

- Web archive servers, postage stamp services, on-demand data analysis
- Prototype architecture running pipelines in containers in a Docker swarm cluster
- CASU JupyterHub running in the swarm cluster and spawning analysis notebooks in containers allows interactive analysis closer to where the data are
- Parallel and distributed pipelines.
- Architecture upgraded to Kubernetes, running on top of OpenStack (deployed to IRIS at Cambridge CSD3)

Imaging Science Pipelines

Monthly delivery of data products to Public Survey PIs Preparation and delivery of Phase 3 data products to ESO PSF photometry development and deployment for selected surveys (eg Bulge and Magellanic Cloud surveys)

VISTA Alerts: rapid processing

VST + OmegaCAM VISTA + VIRCAM

Imaging Surveys: VISTA

IoA developed and operate pipeline processing for VISTA IR surveys

18 Nov 2020

Nic Walton - CASU@IRIS Science @ IRI

Imaging Surveys: VST http://casu.ast.cam.ac.uk/surveys-projects/vista

Why? Range of ESO public surveys, e.g. ATLAS, VPHAS, etc What? IoA developed and operate pipeline processing for VST (Optical) surveys plus support of ESO Phase 3 releases When? Surveys ongoing, 5+ years

Large Scale Data Fusion Example: Known PN matched to Gaia Sources in DR2

Chornay & Walton, 2020

Automation of cross match and cut out service, access to Gaia catalogues and VST images via Jupyter@CASU@IRIS

Nic Walton - CASU@IRIS Science @ IRIS AHM 2020

World class image analysis powering UK data intensive astronomy

Spectroscopic Pipelines

UZS

Design of complete data system architecture Development of QC pipeline Development of Operational Repository and spectral extraction pipelines Design of interfaces to spectral analysis pipelines and Archive

4MOST

https://www.4most.eu

Why? Galactic structure (Gaia complement), High energy sky (eROSITA complement), Cosmology

- What? IoA lead development (and future operations) of the complete (QC/L0/L1/L2 Op Repository) processing system
- When? Surveys start 2021 with Operations phase 5+5 years/ plus likely 5 year additional survey operations

Science case	S/N / Å	r _{AB} -mags	Targets (Millions)
S1 Milky Way Halo LR Survey	10	16–20.0	1.5
S2 Milky Way Halo HR Survey	140	12–15.5	0.08
S3 Milky Way Disk and Bulge LR Survey	10–30	14–18.5	10.7
S4 Milky Way Disk and Bulge HR Survey	140	14–15.5	1.8
S5 Galaxy Clusters Survey	4	18–22.0	1.1
S6 AGN Survey	4	18–22.0	0.5
S7 Galaxy Evolution Survey (WAVES)	4	18–22.5	1.4
S8 Cosmology Redshift Survey	4	20–22.5	9.4
Total			>25

WEAVE:

http://www.ing.iac.es/weave

~1000 fibres (+mIFU and IFU) over ~ π deg² at R up to 20,000 for λ ~366-959nm

WEAVE 7 year surveys commence early 2020

Blue VPH

Patch

Panels

Shutters

Goals: Galactic structure (Gaia complement), Galaxy evolution (LOFAR complement) IoA lead development (and future operations) of the Core (QC/L0/L1/ Op Repository) processing system Surveys start 2021 with Operations phase 7 years

18 Nov 2020

Spectroscopy: WEAVE data full system tests

Nic Walton - CASU@IRIS Science @ IRIS AHM 2020

CASU Archives and Operational Repositories

CASU provide access to

ioa

data both internally to survey teams and externally to consortia. Database access via IRIS will provide enhanced resilience.

18 Nov 2020

Gaia-ESO Survey Archive

ie .	Overview	Observations	Objects	Processing	Help	My requests	Logout

GES MW 1528035-504234HR10

Coordi

Coordinates:	15:28:03.5 -50:42:34		Grating:	H548.8	
File name:	C20120312_00034_f	n.fit	Filter name:	HR10	
ESO name:	GIRAF.2012-03-13T0	8:46:21.579.fits	Grating resolution:	40000.0	
OB ID:	200226309		Grating order:	10	
Date of observatio	on: 2012-03-13T08:46:2	1.579	Allocated objects:	118 (1)	
Exposure Time:	1800.0034		Allocated sky:	21 (0)	
Airmass:	1.12		Unallocated objects	: 1	
Seeing:	1.32		Last modified:	2012-09-04 08:49:4	12
Targets					
	Name	Coordinates		Magnitude	Spectrum
	6012201	15:27:02.31	-50:38:39.4	16.92	Spectrum
	6000182	15:27:04.62	-50:49:58.3	16.61	Spectrum
	6015115	15:27:09.21	-50:36:07.3	16.87	Spectrum
	6007202	15:27:14.85	-50:42:56.6	16.89	Spectrum
	6007485	15:27:18.47	-50:42:40.3	16.60	Spectrum
	6001370	15:27:21.43	-50:48:34.6	16.92	Spectrum
	6010092	15:27:21.99	-50:40:26.0	16.88	Spectrum
	C014454	10.33.33.03	50.35.44.1	10.74	E

Applying 'astro' techniques to the medical domain

astronomical image analysis and data analysis developed at CASU, IoA, Cambridge applied to medical imaging data

IMAXT Data Analysis and Infrastructure Cancer Research UK Grand Challenge

Interactive data visualisation

JupyterHub Deployment: CASU@IRIS

18 Nov 2020

oa

Processing 100 images in distributed containers using 60 cores

20

PLATO (ESA M3) http://sci.esa.int/plato

Goals: will detect and characterize planets down to Earth-size by high precision photometric transits around ~1M bright stars.

Launch end 2026. 4 to 8 years operations plus post operations

Nic Walton - CASU@IRIS Science @ IRIS AHM 202

18 Nov 2020

PLATO 2.0: Rauer et al 2013

PLATO PLAnetary Transits and Oscillation of stars

Goals: will detect and characterize planets down to Earth-size by high precision photometric transits around ~1M bright stars. Planetary masses will be determined by ground-based radial velocity measurements. Stellar parameters like age and mass will be obtained by asteroseismology

What? IOA development and operations of **Exoplanet Analysis** System pipelines.

PLATO Data Processing Centre Exoplanet Analysis at @ Cambridge

Gaia and DPAC @ Cambridge

Mapping the Milky Way: 2 Billion Stars Gaia Data Release 2 (Apr 2018): https://www.cosmos.esa.int/web/gaia/dr2 Gaia Early Data Release 3 (3rd Dec 2020)

Cambridge DPCI Cluster @ West Cambridge Data Centre

220 nodes provide combined compute+storage

Cambridge DPCI Software Stack

- The processing stack has transitioned from MapReduce to Spark
- Provides flexibility as Spark processing can be deployed on non Hadoop Cluster architectures
- Opens the possibility to deploy on IRIS type infrastructures

Will investigate use of IRIS for future Gaia Core processing

CASU actively participating in the IRIS initiative

- Current activity involves deployment of data analysis and database access to VISTA imaging data
- Expand capability to provide user access to analysis chains linked to all CASU science data products
 - Improved science consortium access to internal data releases
- Investigate deployment of core Gaia processing to IRIS in the 2023/24 timeframe (assumes IRIS or similar provision longer term and UKSA/STFC agreement)
 - Experience informs deployment of PLATO processing centre post 2025