

ATLAS Trigger in Run-3

Arantxa Ruiz Martínez

HEP Seminar, Queen Mary University of London 21 January 2021

Large Hadron Collider (LHC) 27 km circumference 100 m-underground tunnel

ALICE

CMS

LHCb

ATLAS

LHC collisions

- Crossing of the two proton beams at an interaction point is called Event
- $\otimes~$ 2808 bunches/beam with 1.1×10^{11} protons/bunch
- $\otimes~$ 7.5 cm \times 16 μm bunch size (human hair: \sim 50 $\mu m)$
- $\odot~\sim\!\!30$ MHz bunch crossing (40 MHz if the machine is full with 1 bunch crossing every 25 ns)
- Output to 60 collisions per bunch crossing (pileup) in 2018
- ⊘ Collisions at $\sqrt{s} = 13$ TeV (6.5 TeV per beam) in Run 2 → to be potentially increased to $\sqrt{s} = 14$ TeV in Run 3 (LHC designed maximum collision energy)

LHC schedule

LHC schedule recently updated, Run-3 start in Feb 2022 and extended to 2024

- $\,\otimes\,\,$ Nominal design luminosity of $1 \times 10^{34} \mbox{ cm}^{-2} \mbox{s}^{-1}$ achieved on 26 June 2016
- $\odot~$ Record peak luminosity of $2.1 \times 10^{34}~cm^{-2}s^{-1}$ achieved on 5 May 2018

The ATLAS experiment

- ATLAS is a multipurpose experiment, targeting a large variety of Standard Model measurements over many orders of magnitude in cross section and searches for new physics (SUSY, Dark Matter, etc.)
- ⊗ For 13 TeV proton-proton collisions at 2×10^{34} cm⁻²s⁻¹, expect 600 Hz of $W(\rightarrow lep)$ and 0.01 Hz of *ttH*

Standard Model Total Production Cross Section Measurements Status: May 2020

The ATLAS Trigger System

- Trigger (online event selection for permanent storage) is of paramount importance since is the first cut applied to any physics analysis
- Two level trigger system

Level-1 (L1)

- Hardware-based trigger

- Inputs from Calorimeter and Muon systems with coarse detector granularity defining Regions of Interest (Rols)

- Latency: $< 2.5 \ \mu s$

100 kHz

High Level Trigger (HLT)

- Software-based trigger
- Full detector granularity
- Latency: $\,\sim$ 0.5 s average

1 kHz average × 1 MB/event = 1 GB/s

- Run-2 environment significantly harsher than Run-1:
 - $\,\otimes\,\,$ Higher center-of-mass energy: 8 \rightarrow 13 TeV
 - $\odot~$ Higher peak luminosity: $0.76 \times 10^{34} \rightarrow 2.1 \times 10^{34}~cm^2 s^{-1}$
 - Higher pileup: $35 \rightarrow 60$
 - \odot Bunch spacing: 50 \rightarrow 25 ns
- ATLAS TDAQ system improvements for Run-2:
 - Higher bandwidth:
 L1 from 60 to 100 kHz
 - HLT from 400 to 1000 Hz
 - Possibility of topological selections at L1: L1Topo
 - Unified HLT (Level-2/EF) architecture
 - Deferred triggers: store subset of the events in the DAQ system, to be processed later during (between) fills
 - Data Scouting: write out events with only trigger objects

- Run-3 environment significantly harsher than Run-2:
 - \odot Possibly higher center-of-mass energy: 13 ightarrow 13.5 14 TeV
 - $\odot~$ Luminosity levelling at $2 \times 10^{34} \mbox{ cm}^2 \mbox{s}^{-1}$
- ATLAS Phase-1 upgrades and main improvements for Run-3:
 - L1 Calorimeter trigger (L1Calo)
 - L1 Topological trigger (L1Topo)
 - L1 Muon trigger (L1Muon) endcap sector logic
 - Muon to Central Trigger Processor Interface (MUCTPI)
 - New Small Wheel (NSW) (MicroMegas (MM) and small-strip TGC (sTGC))
 - New RPC detectors (RPC-BIS78)
 - New coincidences between TGC-BW and NSW/RPC-BIS78
 - Multi-threaded software framework (AthenaMT)

ATLAS Trigger and Data Acquisition System in Run-3

Run-3 L1Calo system

Both legacy and Phase-1 L1Calo systems will run in parallel for commissioning

Run-3 L1Calo system

Finer-granularity LAr Calorimeter input:

◎ 0.1x0.1 trigger tower \rightarrow 10 E_{T} values from "1-4-4-1" samples (SuperCells)

Existing System

 Better resolution and background rejection

Run-3 L1Calo system

New ATCA-based Feature EXtractors (FEX):

- eFEX (electron feature extractor)
 - ◎ 24 ATCA modules covering $|\eta| \le 2.5$
 - \odot Granularity: 0.025 × 0.1 (supercells)
 - Identifies electrons, photons and taus
 - More sophisticated clustering algorithms and isolation
- ◎ jFEX (jet feature extractor)
 - \odot 7 ATCA modules covering $|\eta| \leq$ 4.9
 - \circ 0.1 \times 0.1 input trigger-tower data
 - Identifies jet, E^{miss}, hadronically-decaying taus
 - Sophisticated "round" jet algorithms
- Image: gFEX (global feature extractor)
 - I ATCA module to process the entire calorimeter data
 - \odot 0.2 \times 0.2 input tower-sum data
 - Full-scan algorithms to compute global event quantities
 - Many different MET algorithms to be explored

ATLAS

Run-2 L1Calo system performance

Single EM is the L1 trigger with the highest rate (> 30 kHz at peak lumi 2E34)

ightarrow Generic trigger for inclusive W
ightarrow ev measurements and analyses requiring at least a low- E_{T} electron

Run-3 L1Calo system performance

In Run-3, the main gain comes from the reduction of L1 electron trigger rate

ATLAS-TDR-023-2013

Muon system

- Fast readout for triggering (no *p*_T measurement, only threshold passed and multiplicities):
 - \odot Resistive Plate Chambers (RPCs) for barrel ($|\eta| < 1.05$)
 - \odot Thin Gap Chambers (TGCs) for endcap (1.05 < $|\eta|$ < 2.4)
- High resolution for precision tracking:
 - Monitored Drift Tubes (MDTs)
 - Cathode Strip Chambers (CSCs)
- Toroidal magnets provide average magnetic field of 0.5 T

New muon detectors for Run-3

- New Small Wheel (NSW):
 - \odot Designed to provide a \sim 7 fold increase for fake muons rejection rate for the HL-LHC
 - O Upgrade for Run 3 replacing the current first station of the muon end-cap system
 - The NSW exploits two detector technologies:
 - The Micromegas (MM) detectors optimized for precision tracking
 - The small-strip TGC (sTGC) optimized for triggering
- New RPC detectors (RPC-BIS78) will be added to the boundary region between barrel and endcap
- New coincidences between TGC-BW and NSW/RPC-BIS78 will be introduced to mitigate fake triggers and to improve the p_T resolution

New muon detectors for Run-3

- New Small Wheel (NSW):
 - \odot Designed to provide a \sim 7 fold increase for fake muons rejection rate for the HL-LHC
 - Upgrade for Run 3 replacing the current first station of the muon end-cap system
 - The NSW exploits two detector technologies:
 - The Micromegas (MM) detectors optimized for precision tracking
 - The small-strip TGC (sTGC) optimized for triggering
- RPC-BIS78: new RPC detectors will be added to the boundary region between barrel and endcap
- New coincidences between TGC-BW and NSW/RPC-BIS78 will be introduced to mitigate fake triggers and to improve the pT resolution

L1Muon system improvements

Run-2:

 6 p_T thresholds combining RPC and TGC information at MUCTPI: MU4, MU6, MU10, MU11, MU20, MU21

- \otimes RPC: 6 p_T thresholds (3 two-station for low p_T and 3 three-station for high p_T)
- © TGC: 15 p_T thresholds, flags with track quality, charge information, etc.

Level-1 Topological Trigger (L1Topo)

- The Level-1 topological processor (L1Topo) is a new system installed in 2016, operated in 2017 and 2018
- Applies topological selections on L1Calo and L1Muon inputs to reduce the L1 rate (invariant mass, angular cuts, etc.)
- In Run-2, L1Topo consisted of 2 ATCA modules with 2 processor FPGAs (Xilinx Virtex7) each
- In Run-3, L1Topo will consist of 3 ATCA modules with 2 FPGAs (Xilinx Ultrascale+) each with x3 processing power

Run-2 L1Topo module

Run-3 L1Topo module

ATLAS

Level-1 Topological Trigger (L1Topo)

H ightarrow au au trigger rates

B-physics L1Topo trigger rates

High Level Trigger

HLT software-based trigger (100 kHz \rightarrow 1 kHz average)

- Section 2018 Large computing farm, O(45k) processing units in 2018
- Sophisticated selection algorithms run using full granularity detector information in either Rols or the whole event using the ATLAS software framework Athena

Athena:

- Multi-purpose data processing framework of the ATLAS Experiment used for: Trigger, Simulation, Reconstruction and Analysis
- $\,\otimes\,\,$ Designed in 2000s, based on Gaudi, core framework shared with LHCb
- The required CPU to run ATLAS reconstruction will increase dramatically for future LHC data taking (Run 4 and beyond)
- ATLAS is redesigning its core framework for native, efficient and user-friendly multi-threading support (AthenaMT) already for Run 3

- ATLAS HLT Software requirements:
 - $\,^{\odot}\,$ Needs to reconstruct physics objects and take decision within ${\sim}0.5$ s
 - Partially sharing of code with offline reconstruction, but cannot afford to reconstruct full event (up to 30 s)
 - Using partial event reconstruction in Rols and early rejection
 - In Run2, HLT implemented custom trigger algorithm scheduling and data caching system
- Migration to AthenaMT for Run 3:
 - Major rewrite of HLT software
 - HLT trigger is not limited by memory, but will profit from the redesign in order to integrate more tightly with offline reconstruction
 - HLT requirements (partial event reconstruction in Rols and early rejection) considered during design of AthenaMT from the beginning
 - Inter-event: multiple events are processed in parallel
 - Intra-event: multiple algorithms can run in parallel for an event
 - In-algorithm: algorithms can utilize multi-threading and vectorisation
 - Replacing own scheduling and caching by native Gaudi Scheduler, but still aided by HLT-specific Control Flow logic to ensure early termination
 - Partial event reconstruction provided by Event Views

HLT calorimeter and tracking software

Run 2:

- HLT calorimeter topological clustering: can run either within an Rol (i.e., τ) or in full scan mode (i.e., jets) → double-peak in processing time distribution
- HLT tracking:

computationally/readout/network traffic intense to run tracking on complete event, Rol-based tracking only used up to now (electrons, muons, taus, b-jets, ...)

Run 3:

A. Ruiz (IFIC)

- Regional tracking for leptonic signatures
- Full Scan tracking for hadronic signatures explored (Particle Flow jets, track-based MET)
 - Track reconstruction speed up pursued to be able to run in full scan mode

- Trigger signature reconstruction is formed in several steps to achieve early rejection and meet HLT rate and processing time constraints
- Two types of algorithms:
 - Feature Extraction: builds objects (tracks, clusters, ...)
 - Hypothesis: apply selection cuts (p_T, invariant mass, ...)
- ◎ Typical HLT chain:
 - 1 Fast reconstruction:
 - Access to Rols or full detector (e.g. jets, MET)
 - Often trigger-specific algorithms
 - 2 Precision reconstruction:
 - Full detector information available
 - Sophisticated offline-like algorithms

Machine learning at HLT

- electron triggers:
 - \odot Neural-network based Ringer algorithm used by default for electron triggers with $E_T > 15$ GeV since 2017
 - Fast decision and more discrimination power than simple linear cuts
- ◎ Tau triggers:
 - The algorithm to identify the visible decay products of hadronic tau decays (τ_{had-vis}) based on recurrent neural networks (RNN)
 - RNN employing information from reconstructed tracks and clusters as well as high-level discriminants
- ø b-jet triggers:
 - BDT based algorithm to separate b-jets from light and c-jet backgrounds, training performed with MC tt
 - Move to DL1r in Run 3

ATLAS Trigger strategy and content of menus

- Trigger strategy driven by the physics priorities of the experiment
- During LS1, the trigger menu for Run-2 was widely discussed in the collaboration and defined after collecting the necessary feedback from the different groups
- Trigger menu considerations:
 - Sit within hardware, rate and CPU constraints
 - Trigger algorithms/selections close to offline reconstruction to maximize efficiency
 - Keep menus as inclusive as possible
 - Access corners of the phase space
 - Keep some margin for new ideas
- Trigger menu evolution carefully designed to maximize the physics output considering different benchmark scenarios (0.5e34, 1e34, 1.5e34, 2e34): higher thresholds and tighter identifications progressively applied
- Ø General reluctance to change thresholds during the year
- During Run-2, menu reviewed every year, incorporating signature deliverables, improvements and brand new triggers
- During physics production years, data taking stability becomes the dominating criteria, ensure the continuity of the main triggers to minimize disruption of physics analyses
- Similarly in LS2 for Run 3 data taking

ATLAS Trigger Menu in Run-2

- Trigger Menu: collection of triggers and corresponding prescales
- Prescales are used to reduce the rate, prescale of N (e.g. N=100): only accept 1 out of N events

Standard high- μpp menu in 2018

Trigger	Typical offline selection	Trigger Selection		L1 Peak	HLT Peak
		L1 [GeV]	HLT [GeV]	Rate [kHz]	Rate [Hz]
			-	1.42.0010	· cm -s ·
Single leptons	Single isolated μ , $p_T > 27$ GeV	20	26 (i)	16	218
	Single isolated tight e, p _T > 27 GeV	22(0)	26 (1)	31	195
	Single µ, p _T > 52 GeV	20	50	16	20
	Single e, py > 61 GeV	22(0)	60	28	20
	Single τ , $p_T > 170$ GeV	100	160	1.4	42
	Two μ , each $p_T > 15$ GeV	2×10	2×14	2.2	30
	Two μ , $p_T > 23, 9$ GeV	20	22,8	16	47
	Two very loose e , each $p_T > 18$ GeV	2×15(i)	2×17	2.0	13
Two lentons	One e & one µ, p _T > 8, 25 GeV	20 (µ)	7,24	16	6
	One loose e & one μ , $p_T > 18$, 15 GeV	15, 10	17, 14	2.6	5
	One e & one μ , $p_T > 27, 9$ GeV	22 (c, i)	26, 8	21	4
	Two r, p _T > 40, 30 GeV	20 (i), 12 (i) (+jets, topo)	35, 25	5.7	93
	One τ & one isolated μ , $p_T > 30$, 15 GeV	12 (i), 10 (+jets)	25, 14 (i)	2.4	17
	One T & one isolated e, pT > 30, 18 GeV	12 (i), 15 (i) (+jets)	25, 17 (i)	4.6	19
	Three very loose e, p _T > 25, 13, 13 GeV	$20, 2 \times 10$	24, 2 × 12	1.6	0.1
	Three μ , each $p_T > 7 \text{ GeV}$	3×6	3×6	0.2	7
Three leptons	Three μ , $p_T > 21$, 2×5 GeV	20	$20, 2 \times 4$	16	9
	Two μ & one loose $e, p_T > 2 \times 11, 13 \text{ GeV}$	$2 \times 10 (\mu)$	$2 \times 10, 12$	2.2	0.5
	Two loose e & one μ , $p_T > 2 \times 13$, 11 GeV	2×8,10	2×12,10	2.3	0.1
Signle photon	One loose y, p _T > 145 GeV	24 (i)	140	24	47
Two photons	Two loose y, each p _T > 55 GeV	2×20	2×50	3.0	7
	Two γ , $p_T > 40, 30 \text{ GeV}$	2×20	35, 25	3.0	21
	Two isolated tight y, each py > 25 GeV	2×15(i)	2 × 20 (i)	2.0	15
	Jet (R = 0.4), py > 435 GeV	100	420	3.7	35
Single jet	Jet (R = 1.0), p _T > 480 GeV	111 (topo: R = 1.0)	460	2.6	42
	Jet (R = 1.0), p _T > 450 GeV, m _{jet} > 45 GeV	111 (topo: R = 1.0)	420, m _{jet} > 35	2.6	36
	One b ($e = 60\%$), $p_T > 285 \text{ GeV}$	100	275	3.6	15
	Two b ($e = 60\%$), $p_T > 185, 70 \text{ GeV}$	100	175,60	3.6	11
b-jetx	One b ($e = 40\%$) & three jets, each $p_T > 85$ GeV	4 × 15	4×75	1.5	14
	Two b (e = 70%) & one jet, p _T > 65, 65, 160 GeV	2 × 30,85	2 × 55, 150	1.3	17
	Two b ($e = 60\%$) & two jets, each $p_T > 65$ GeV	4×15 , $ \eta < 2.5$	4×55	3.2	15
	Four jets, each py > 125 GeV	3 × 50	4×115	0.5	16
	Five jets, each py > 95 GeV	4×15	5×85	4.8	10
Multijets	Six jets, each py > 80 GeV	4×15	6×70	4.8	4
	Six jets, each p _T > 60 GeV, η < 2.0	4 × 15	6×55 , $ \eta < 2.4$	4.8	15
Er	$E_{\pi}^{max} > 200 \text{ GeV}$	50	110	5.1	94
B-physics	Two u. pr > 11.6 GeV. 0.1 < m(u. u) < 14 GeV	11.6	11.6 (di-u)	2.9	55
	Two a my > 6.6 GeV 2.5 < m(a, a) < 4.0 GeV	2 x 6 (1/ik tato)	2×6(1/w)	14	55
	Two μ , $p_T > 6, 6$ GeV, $4.7 < m(\mu, \mu) < 5.9$ GeV	$2 \times 6 (B, tope)$	2×6(B)	14	6
	Two μ , $p_T > 6, 6$ GeV, $7 < m(\mu, \mu) < 12$ GeV	2×6(Y, topo)	2×6(0)	1.2	12
Main Pate		(inter)			1750
B-physics and I	ight States Rate			86	20

2015 Menu: ATL-DAQ-PUB-2016-001 2016 Menu: ATL-DAQ-PUB-2017-001 2017 Menu: ATL-DAQ-PUB-2018-002 2018 Menu: ATL-DAQ-PUB-2019-001

HI menu in 2018

		Trigger Selection		1.1	HLT	- 11	HLT
Trigger	Signature	L1 [GeV]	HIT IGAI	Rate [kHz]	Rate [Hz]	Rate [kHz]	Rate [Hz]
				L=5.0×10 ²	cm x	L=2.0×10 ²	cm ⁻² s ⁻¹
Leptons	Single µ	6	8	0.47	54	0.21	23
	Тво µ	2×4	2×3	0.16	38	0.071	15
	Teo µ	4	2×4	1.5	28	0.93	15
	Single e (lbloosz)	12	13	2.5	11	0.97	4.4
	Single e (loose)	16	20	0.93	35	0.36	14
	Two e (loosz)	2×16	2 × 20	0.29	0.2	0.11	0.13
Photons	Single y	12	20	2.5	61	0.97	25
Les.	Single jet ($R = 0.4$)	30	85	17.1	120	6.6	47
	Single jet $(R \equiv 0.4)^7$	12	60	0.24	13	1.3	69
2015	Single jet ($R = 1.0$)	50	190	14.4	66	5.6	26
	Single jet (R = 0.4, q > 3.2.)	15	55	12.5	25	9.7	19
	$Jet(R = 0.4) R \mu$	4 (a), 15 (let)	4 (a), 69 (lat)	1.8	7	0.7	3
	$Jet(R = 0.4) \& \mu^2$	4 (µ)	4 (µ), 50 (jet)			0.93	6
h-jets	$Jet(R = 0.3) R \mu^2$	4 (µ)	4 (µ), 49 (kt)			0.93	6
	Jet (R = 0.2) & µ ²	4 (µ)	4 (µ), 30 (jet)			0.93	6
	Very peripheral coll	TE < 50 ZDC & # C	1.0trada)	14	- 04	12	261
MB	Peripheral coll."	50 < TE < 600	8090	0.034	34	0.12	116
	Central coll.	TE > 600	9090	0.029	29	1.2	120
	Very peripheral coll	TE < 50 ZDC & # C	1.0trada)	5.4	766	9.6	2045
MB PEB	Drinberg coll	50 c TE c 600	2021	0.3	7565	0.9	930
	Central coll.	TE > 600	8292	0.8	822	0.23	2251
Global	Ultra central cell	12000 c TF	4450 (7.8 102)	2.1	51	0.89	12
	Event share	600 c TE	top 0.1% to in A.Calde			12	0.6
	Theat share	600 c TF	ton 0.1% to in All side			13	0.6
	X + X + X + X	A < TE < 200.8 100	Emple & c 15(20)	77	14	11	- 14
	x+x+x+x	TE < 50 & 2 x 1 (x)	Empl(& < 15(20)	18	3	0.46	27
	$\gamma + \gamma \rightarrow \mu + \mu$	$TE < 50 & 4 (\mu)$	4 (µ)	0.27	5	0.19	2.1
	$\gamma + \gamma(A) \to 10^{\circ}$	TE< 200 & 4 (µ) & (12DC A or 12DC C)	4 (μ)	0.25	1.5	0.19	0.6
	$\gamma + \gamma \rightarrow \epsilon + \epsilon$	TE < 200 & 7 (e)	12(e)	0.09	1	0.03	0.5
urc	$\gamma + \gamma \rightarrow \gamma + jct$	TE < 200 & 7 (y)	12(y)	0.09	6	0.03	2.4
	$\gamma + A \rightarrow \mathrm{jets}$	5 < TE < 200 & ((ZDC A & 'ZDC C) or (ZDC C & 'ZDC A))	20 (jet)	0.93	69	0.40	24
	$\gamma + \gamma \rightarrow jets$	4 < TE < 200 & ('ZDC A & 'ZDC C)	15 (jet, R = 0.4)	0.65	22	0.74	11
	$\gamma + \gamma \rightarrow jets$	4 < TE < 200 & (IZDC A & IZDC C)	15 (jet, R = 1.0)	0.65	36	0.74	20
	high multiplicity	4 < TE < 200 & ZDC A & 22DC C	FgapC & 35 (#tracks)	0.48	2.4	0.20	0.7
	high multiplicity	4 < TE < 200 & ZDC C & ZDC A	FgapA & 35 (#tracks)	0.47	2.4	0.20	0.9
	$\gamma + A \to \mathbf{X}^\dagger$	TE < 200 & ((ZDC A & 1ZDC C) or (ZDC C & 1ZDC A))	1 (Øtracks)	0.56	15	0.50	12
	$\gamma + A \rightarrow \gamma M$	TE < 20	1-15 (Rtracks)			16.5	60

ATLAS Trigger Menu

- ATLAS Trigger Menu in Run 2:
 - L1 menu constrained to a maximum of 512 L1 items
 - Maximum L1 output rate of 100 kHz
 - HLT menu consists of O(1500) HLT chains, out of which 300 primaries
 - Average HLT output rate of 1000 kHz (1500 kHz at peak luminosity)
- Average HLT output rate depends on the fill pattern and is limited by storage capacity:
 - $_{\odot}\,$ In Run 2, HLT average rate \sim 2/3 HLT peak rate
 - In Run 3, luminosity levelling expected for a long fraction of the run:
 - HLT average rate becoming closer to HLT peak rate
 - Need alternative strategy for end-of-fill triggers (B-physics)

ATLAS Trigger categories

- $\,\otimes\,\,$ Primary triggers: used for physics analyses, typically running unprescaled
- Support triggers: used for bkg estimation and performance measurements
- End-of-fill triggers: used typically for B-physics, TLA, where can be activated at lower instantaneous luminosities where there is bandwidth available
- Alternative triggers: used for alternative online reconstruction algorithms
- Backup triggers: used to reduce the rate applying tighter selections
- Calibration triggers: used for detector calibrations

- Chains require either full event building or partial event building (PEB) with only subdetector information for recording into data streams
- Rate assignment rule of thumb:
 - Generic triggers serving multiple analyses are allowed to have a significant fraction of the rate: O(10 Hz)
 - Specific triggers targeting individual analysis: O(1 Hz) or higher rate accommodated at the end of fill
 - Support triggers get O(0.5 Hz) and represent 15% of the HLT bandwidth at peak lumi
- Triggers are accommodated to the menu with target rates achieved tightening selection requirements, applying isolation criteria, raising thresholds, or combining different objects

Lowest unprescaled single lepton triggers:

- Most expensive triggers in terms of rates, O(200 Hz) each at peak lumi 2e34, due to the large number of clients
- Ising tight identification requirements and track-based isolation criteria at HLT

	Trigger Sele	L1 Peak	HLT Peak	
Typical offline selection	I 1 [GeV]	HITIGAN	Rate [kHz]	Rate [Hz]
	LI [GUV]		$L=2.0\times10^{34} \text{ cm}^{-2}\text{s}^{-1}$	
Single isolated μ , $p_{\rm T} > 27 {\rm GeV}$	20	26 (i)	16	218
Single isolated tight $e, p_T > 27 \text{ GeV}$	22 (i)	26 (i)	31	195

Single electron trigger 26 GeV

Single muon trigger 26 GeV

ATLAS Trigger Menu strategy

- Aiming for a trigger menu as inclusive as possible, with generic triggers and specific triggers targeting a large variety of final states!
- O Physics use cases:
 - © **Electron:** Generic analyses (W, Z, dibosons, $t\bar{t}$, etc.)
 - Muon: Generic analyses (W, Z, dibosons, tt, etc.)
 - Jet: jet production, dijet resonances searches, etc.
 - ◎ **b-jet:** $H \rightarrow b\bar{b}$, $t\bar{t}$, etc.
 - Missing E_T (MET): SUSY searches, etc.
 - **Tau:** $H \rightarrow \tau \tau$, searches, etc.
 - **Photon:** $H \rightarrow \gamma \gamma$, γ production, etc.
 - ◎ B-physics and Light States: J/ψ , Υ , etc.

Different streams defined such as:

- © Express: stream for fast offline monitoring and detector calibration (few Hz)
- Main Physics: including majority of the events using full event building
- B-physics and Light States (LS): fraction of the data acquired and parked (delayed stream)
- Trigger Level Analysis (TLA): circumvent the bandwidth limitation using PEB (< 5% standard event size recorded) for instance for di-jet resonance searches

Expect more felxibility to accomodate high-rate triggers in dedicated delayed streams

Different streams defined such as:

- © Express: stream for fast offline monitoring and detector calibration (few Hz)
- Main Physics: including majority of the events using full event building
- B-physics and Light States (LS): fraction of the data acquired and parked (delayed stream)
- Trigger Level Analysis (TLA): circumvent the bandwidth limitation using PEB (< 5% standard event size recorded) for instance for di-jet resonance searches

Expect more felxibility to accomodate high-rate triggers in dedicated delayed streams for Run-3

Trigger Level Analysis (TLA)

- Novel idea to circumvent the bandwidth limitation using partial event building (< 5% standard event size recorded)
- Prescale factors normally applied to the HLT iet triggers in the standard stream
- Large gain in statistics for the data scouting stream for $p_T < 400 \text{ GeV}$
- Important for low mass dijet searches \rightarrow Increase sensitivity

A. Ruiz (IFIC)

Summary

- ATLAS TDAQ system very successfully and efficiently recording data in Run 1 and Run 2, under tight constraints and challenging conditions
- TDAQ hardware upgrades and software improvements needed to keep excellent performance for physics in terms of acceptance and efficiency
- Run 3 improvements: new L1 hardware and improved HLT algorithms
 - Upgraded L1Calo and L1Muon system The Run 3 trigger system will exploit all of the capabilities that the new hardware components will bring.
 - Better harmonization with respect to offline reconstruction with AthenaMT
- © Flexible trigger menu to select the data used in a wide range of physics analyses
 - Make best possible use of the available bandwidth for physics: more precise measurements, extend phase space for new physics searches
- Run-3 trigger priorities will be twofold in the coming months:
 - Define a robust commissioning strategy for the brand-new systems
 - Support physics from day 1

- ATLAS public results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerPublicResults https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
- ATLAS Liquid Argon Calorimeter Phase-I Upgrade Technical Design Report: ATLAS-TDR-022, https://cds.cern.ch/record/1602230
- Technical Design Report for the Phase-I Upgrade of the ATLAS TDAQ System: ATLAS-TDR-023, https://cds.cern.ch/record/1602235