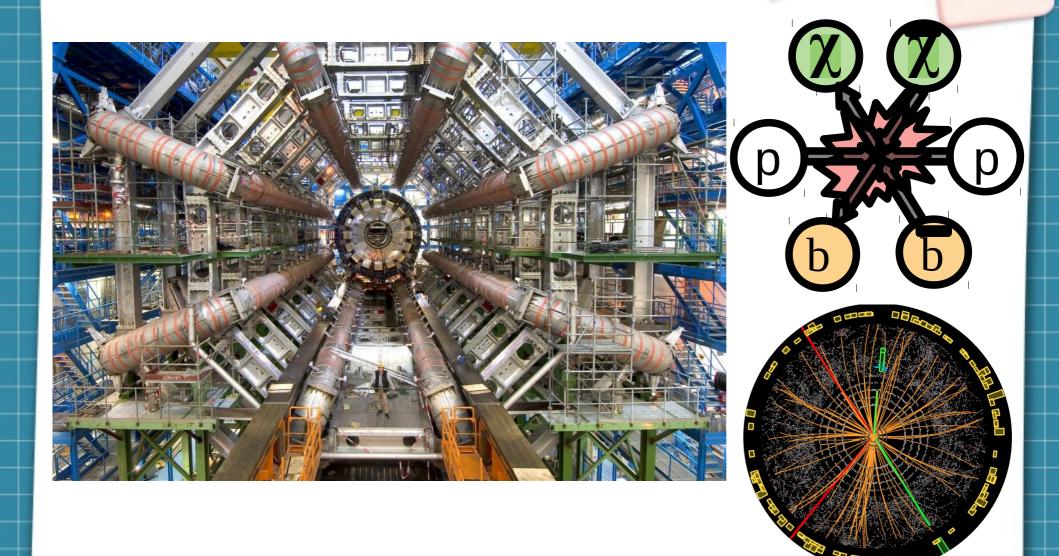
Artificial Intelligence and Dark Matter

Making the Terminator play spot the difference

Joe 'definitely not a robot' Davies

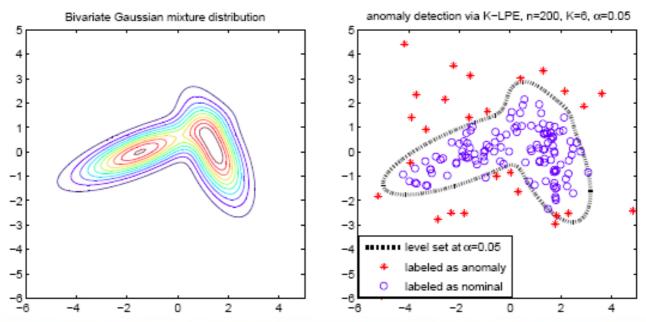

Introduction

The Large Hadron Collider

The Search at ATLAS

The Dark Machines Group

- Group of academics and PhD students working on Dark Matter detection using Machine Learning
- QMUL works primarily on Anomaly Detection (AD)



obj1	E1	pt1	eta1	phi1	obj2	E2	pt2	eta2	phi2	obj3	E3	pt3	eta3	phi3	obj4	E4
j	407492	393095	-0.266637	-2.68505	j	633731	283693	1.4419	-0.451286	j	269569	145318	1.22541	2.36482	j	138520
j	707690	390901	1.19577	-2.48665	j	165970	162374	-0.073124	0.558267	j	213806	88382.7	1.52776	0.769609	j	190327
j	484710	388499	0.669438	2.1595	j	466224	209644	1.43709	-1.48085	j	173345	159358	0.3921	0.722837	b	76508.9
j	913056	245434	-1.98767	0.978061	j	228497	202999	0.478876	-2.01883	j	153458	146721	-0.259158	-1.87386	j	126963
j	302325	294936	0.181659	3.03634	j	360228	251837	-0.8903	0.173217	j	203074	200825	0.149532	2.22357	j	359058
j	647782	316987	-1.33574	0.0408877	j	1.03028e+06	278691	1.98139	-2.63605	j	442513	190614	-1.48267	2.79699	j	353545
j	390920	325540	0.606702	0.269049	j	1.83279e+06	265269	2.62055	2.28375	j	197980	103625	1.25981	-1.96533	j	191427
j	1.04316e+06	309613	-1.88456	1.17333	j	809841	304875	1.63051	2.00532	b	403629	196592	1.34505	-1.43694	j	400995
j	450608	309967	-0.89566	-2.33551	j	216603	214715	0.0388365	0.642919	b	122718	106325	-0.535995	-2.88472	j	132238
j	715153	611756	-0.565908	1.03414	j	511507	314359	1.05445	-2.09756	j	555581	90541.5	-2.50039	-2.36606	j	83013.7

obj	L E1	pt1	eta1	phi1	obj2	E2	pt2	eta2	phi2	obj3	E3	pt3	eta3	phi3	obj4
	j 1.11905e+06	1.09924e+06	0.150071	-1.34083	j	559871	165567	-1.88859	1.47369	j	226151	165330	-0.802848	2.94516	j
	j 275612	245021	-0.469702	-2.83812	j	166684	143305	0.531173	2.26821	j	205771	103965	-1.30103	-0.295798	j
	j 563988	312717	1.18657	-1.43681	j	1.34499e+06	250037	-2.36676	2.86416	j	184328	133523	-0.826793	1.13601	j
	364748	274872	-0.761967	2.96886	j	636767	256438	1.55925	-2.528	b	186686	129489	0.906826	-0.737084	j
	j 359307	342962	0.222528	-2.76879	j	1.03187e+06	201249	2.31779	0.180633	j	133718	103956	-0.715326	2.11942	j
	j 544458	319749	-1.11093	0.350326	j	141426	133030	-0.339183	0.288143	j	131650	128141	-0.211974	3.04308	j
	j 304548	296864	0.179741	-0.647328	j	181607	170330	-0.361503	0.820824	j	131605	126303	0.215301	0.0479811	j
	j 694694	623764	-0.408878	1.48107	j	451083	415452	0.380902	0.699667	j	387672	255939	-0.970173	-0.776873	j
	j 487901	372079	0.766972	-1.67763	j	387396	235274	1.07953	0.552393	j	194074	121355	1.04412	2.47628	j :
	j 529443	484368	-0.406192	0.762605	j	1.2478e+06	103019	3.18557	0.762635	j	105549	96556.7	0.425051	-2.57433	j

- Used when looking for events or data that differ significantly from the general distribution
- Usually done using an Autoencoder which learns some background and attempts to replicate it

The III-Advised Code Demo

Model: "cnn"

Layer (type)	Output Shape	Param #
Input (InputLayer)	(None, 1, 14, 4)	0
conv_1 (Conv2D)	(None, 1, 14, 32)	544
max_pool (MaxPooling2D)	(None, 1, 7, 32)	0
conv_2 (Conv2D)	(None, 1, 7, 32)	4128
flatten_1 (Flatten)	(None, 224)	0
Total params: 4,672 Trainable params: 4,672 Non-trainable params: 0		========

Model: "encoder"

Layer (type)	Output Shape	Param #	Connected to
Input (InputLayer)	(None, 1, 14, 4)	Θ	
conv_1 (Conv2D)	(None, 1, 14, 32)	544	Input[0][0]
max_pool (MaxPooling2D)	(None, 1, 7, 32)	Θ	conv_1[0][0]
conv_2 (Conv2D)	(None, 1, 7, 32)	4128	max_pool[0][0]
flatten_1 (Flatten)	(None, 224)	Θ	conv_2[0][0]
dense_encoder_1 (Dense)	(None, 50)	11250	flatten_1[0][0]
dense_encoder_2 (Dense)	(None, 16)	816	dense_encoder_1[0][0]
z_mean (Dense)	(None, 4)	68	dense_encoder_2[0][0]
z_var (Dense)	(None, 4)	68	dense_encoder_2[0][0]
sampling (Lambda)	(None, 4)	0	z_mean[0][0] z_var[0][0]

Total params: 16,874 Trainable params: 16,874 Non-trainable params: 0

Model: "decoder"

Layer (type)	Output Shape	Param #
decoder_input (InputLayer)	(None, 4)	0
dense_decoder_1 (Dense)	(None, 56)	280
reshape_1 (Reshape)	(None, 1, 14, 4)	0
deconv_1 (Conv2DTranspose)	(None, 1, 14, 32)	544
deconv_2 (Conv2DTranspose)	(None, 1, 14, 20)	2580
decoder_output (Conv2DTransp		324

Total params: 3,728 Trainable params: 3,728 Non-trainable params: 0

Model: "vae"

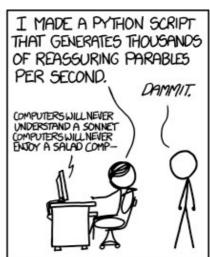
Output Shape	Param #
(None, 1, 14, 4)	Θ
[(None, 4), (None, 4)	, (N 16874
(None, 1, 14, 4)	3728
	(None, 1, 14, 4) [(None, 4), (None, 4)

Total params: 20,602 Trainable params: 20,602 Non-trainable params: 0

```
Train on 192766 samples, validate on 192766 samples
Epoch 1/100
- 18s - loss: 1911.5186 - kl loss: 1682.3239 - recon loss: 228.9868 - val loss: 47.3007 - val kl loss: 1.6682 - v
al recon loss: 45.6170
Epoch 2/100
- 17s - loss: 44.0986 - kl loss: 1.6190 - recon loss: 42.4739 - val loss: 590457.9766 - val kl loss: 526147.8750

    val recon loss: 64231.5352

- 17s - loss: 121814.1695 - kl loss: 116571.5078 - recon loss: 5236.7539 - val loss: 38.9317 - val kl loss: 1.732
5 - val recon loss: 37.1863
Epoch 4/100
- 17s - loss: 37.7864 - kl loss: 1.6714 - recon loss: 36.0981 - val loss: 36.4631 - val kl loss: 1.6795 - val rec
on loss: 34.7718
 - 17s - loss: 35.8215 - kl loss: 1.6806 - recon loss: 34.1281 - val loss: 33.9626 - val kl loss: 1.7386 - val rec
on loss: 32.2137
Epoch 6/100
 - 17s - loss: 1777.8103 - kl loss: 744.8854 - recon loss: 1031.7015 - val loss: 33.2147 - val kl loss: 1.8299 - v
al recon loss: 31.3746
Epoch 7/100
- 13s - loss: 33.7194 - kl loss: 1.8529 - recon loss: 31.8570 - val loss: 17696.6566 - val kl loss: 7021.7446 - v
al recon loss: 10662.0029
Epoch 8/100
 - 12s - loss: 694632.8472 - kl loss: 335702.0000 - recon loss: 358496.0000 - val loss: 1024.0852 - val kl loss: 9
93.4492 - val recon loss: 30.6257
Epoch 9/100
 - 12s - loss: 89.4036 - kl loss: 58.2211 - recon loss: 31.1770 - val loss: 31.4970 - val kl loss: 1.9480 - val re
con loss: 29.5390
Epoch 10/100
- 12s - loss: 31.2938 - kl loss: 1.9779 - recon loss: 29.3026 - val loss: 30.6659 - val kl loss: 2.0370 - val rec
Epoch 11/100
- 12s - loss: 30.8430 - kl loss: 2.0754 - recon loss: 28.7551 - val loss: 28.8196 - val kl loss: 2.2124 - val rec
on loss: 26.5989
Epoch 12/100
- 12s - loss: 30.1142 - kl loss: 2.2288 - recon loss: 27.8747 - val loss: 27.9302 - val kl loss: 2.2172 - val rec
on loss: 25.7049
Epoch 13/100
 - 12s - loss: 28.1635 - kl loss: 2.3115 - recon loss: 25.8434 - val loss: 27.0528 - val kl loss: 2.2471 - val rec
on loss: 24.7982
Epoch 14/100
- 11s - loss: 27.2132 - kl loss: 2.2628 - recon loss: 24.9439 - val loss: 26.9261 - val kl loss: 2.2235 - val rec
on loss: 24.6948
Epoch 15/100
- 11s - loss: 26.5497 - kl loss: 2.3030 - recon loss: 24.2381 - val loss: 26.7589 - val kl loss: 2.3571 - val rec
on loss: 24.3936
Epoch 16/100
- 11s - loss: 25.4426 - kl loss: 2.2330 - recon loss: 23.2022 - val loss: 5108215579516110.0000 - val kl loss: 15
87176441643008.0000 - val recon loss: 3516769687830528.0000
```


Conclusion

- Artificial Intelligence is the newest tool in computational physics – it works!
- A lot of physics today is cutting edge software development
- There is immense creativity in the intersection between physics and computer science

