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1. Introduction
The dielectric response of most of the condensed

matter system shows a remarkable degree of features in 
that its frequency dependence often follows deviation from 
classically expected Debye response, which in the time domain 
corresponds to exponential decay.  The deviation of dielectric 
response from the Debye feature, in general, is referred as non-
Debye relaxation (NDR) or many-body relaxation [1,2]. Their 
interpretation of temperature dependence is carried out using 
either individual or combination of time-honoured models 
like: (i) Cole-Cole (CC) [3-5] (ii) the Cole-Davidson (CD) 
[6] (iii) Havriliak-Negami (HN) [7] dielectric functions (iv)
Kohlrausch-Williams-Watts (KWW) stretched exponential
function [8,9] (v) Jonscher’s universal dielectric response
(UDR) [10-12] and (vi) Ngai’s coupling model (CM) [2,13-
15], (vii) Dyre’s random energy barrier model [16-18]. Each
function has different level of significance for the physical
process of NDR and no consensus has been arrived so far.
Therefore, there is a need of unique NDR function connecting
time and frequency domains with generally acceptable
microscopic physical process. In present work, we propose
NDR model considering the intermolecular Debye type
dipole-dipole interaction generated fractional Debye type
dipole or non-Debye dipole in coupled form by considering
energy criterion in the form of conservation of energy and
moment.
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dielectric relaxation processes is based on Debye type dipole-dipole interaction initiated fractional Debye
type dipoles in the wide range of materials, covering very diverse materials with physical processes-all
of which show a remarkable features of the proposed relaxation behavior. The complex dielectric and
relaxation functions, and their energy criterion in terms of the Debye and the fractional Debye dipole
process provides a new physical insight for the α, β, γ, δ relaxations, excess wing and shoulder structure
in the dielectric loss of glass formers, plastic crystals, drugs, polymers, etc. The model shows an excellent
agreement with experimentally observed dielectric spectra of wide variety of materials.

The proposed concepts constitutes a “innovation” in 
thinking about dielectric relaxation and it moves away 
from the former interpretations which were depend on 
heavily on the concept of (a) distributions of relaxation 
times as used in CC, CD, HN, and KWW, (b) the energy 
criterion as used in Jonscher’s UDR. The Debye-like 
processes supposed to be coexisting in CC, CD, HN, KWW 
models, whereas, Debye like process do not coexisting 
in the energy criterion based Jonscher’s UDR and these 
models constitute a superficially plausible models. The 
existing distribution of relaxation time interpretation and 
energy criterion based models for the NDR do not stand 
up to critical examination and that a different approach 
is therefore essential. Our proposed model and new 
interpretation is based on the unique property of molecular 
level Debye type dipole and its interaction caused fractional 
Debye type dipole relaxation in coupled form of fractional 
Debye type dipole relaxation law in frequency that the 
ratio of the imaginary to the real parts of the complex 
dielectric is dependent on frequency, in sharp contrast to 
the Jonscher’s UDR where this ratio is independent of wide 
range of frequency. Expressions for the complex dielectric 
and relaxation functions have been derived for the Debye 
and fractional Debye type dipole processes. Salient features 
of the proposed complex dielectric and relaxation functions 
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are described and compared with time-honoured models. 
There are controversial results reported and debated in the 
literature on the interpretation of α, β, γ, and δ relaxations, 
and excess wing of dielectric loss data of liquids, glass 
formers, polymers, drugs, plastic crystals etc. The proposed 
model certainly provide new physical insight for the 
NDR and expected to answer many issues related to the 
interpretation of α, β, γ, and δ relaxations, and clarify 
physical picture for excess wing.

2.  Debye and non-Debye dielectric functions 
Debye’s original model of dipolar dielectric response 

consists of a set of identical non-interacting dipoles free to 
rotate against some viscous resistance in fluid-like medium 
by thermal excitation between two preferred orientations 
separated by a potential barrier, a situation more likely 
to be found in solids. In a log(frequency) vs log(dielectric 
loss) plot the Debye dielectric loss is symmetric with 
respect to loss peak having slope +1 below the loss peak 
and -1 above loss peak and has full width at half maximum 
(FWHM) 1.144 decades.  Typical Debye type features 
of dipolar behaviour may be found in few polymers in 
which the dipole may be well characterized both in type 
and in density. However, the dielectric response in several 
polymers and other different system departs strongly from 
Debye features. 

Cole and Cole [3] (CC) suggested the empirical 
dielectric function to account for the deviation from Debye 
features as:  
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where 0≤αCC<1 is a CC parameter depends on material, 

temperature and pressure, and τCC is the CC type relaxation 
time, ∆εCC=εs-ε∞, CC dielectric relaxation strength, εs and 
ε∞ are respectively the high and low frequency limits. In a 
log(frequency) vs log(dielectric loss) plot the CC dielectric 
loss is symmetric with respect to loss peak, having slope 
(1-αCC)<1 below the loss peak and  (1-αCC)<-1 above loss 
peak, and having FWHM greater than the Debye dielectric 
loss FWHM of 1.144 decades.
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where 0<βCD≤1, is a CD parameters depends on 
material, temperature and pressure and τCD is the CD 
type relaxation time, ∆εCD=εs-ε∞, CD dielectric relaxation 
strength, εs and ε∞ are respectively the high and low 
frequency limits. In a log(ω) vs log(dielectric loss) plot 
the CD dielectric loss is asymmetric with respect to loss 

peak having slope 1 below the loss peak and < -1 above 
loss peak. 
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where 0≤αΗΝ<1 and 0<βHN≤1 are parameters depends 
on material, temperature and pressure and  τHN is HN type 
relaxation time. In a log(frequency) vs log(dielectric loss) 
plot the HN dielectric loss is asymmetric with respect to 
loss peak having slope <1 below the loss peak and < -1 
above loss peak and having FWHM greater than the Debye 
dielectric loss FWHM of 1.144 decades.

The inverse Laplace transform of Eqs. (1)-(3) into the 
time domain are not analytical functions. For the time 
dependence polarization current description KKW [8,9] 
empirical function:    
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Let the condensed matter system consist of molecules with reorientation o
dipole moment G0. In an electric field under a given thermodynamic condition, the instantaneous
moment G0 is not possible for a given molecular process due to intermolecular Debye type dipole
interactions. The fraction of Debye type dipole that has not been transferred instantaneously is defined as ±
gd)G0, where 0<gd<1.  The consequence of these interaction is the shift in the magnitude of Debye dipole moment 
G0 by an equal magnitude of ±G=(1
interaction as fractional Debye type dipoles [19,20]:
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is used, where 0<βKWW≤1, the exponent βKWW is a stretching 
parameter, and lower the βKWW value the more stretching 
is the relaxation function and τKWW is the KKW relaxation 
time. The stretching can formally be explained by assuming 
a superposition of exponentials with distribution of 
relaxation times.

Jonscher has reviewed phenomenology of dielectric 
response in wide range materials. He has derived the 
so-called “universal dielectric response” by examining 
the dielectric loss in the frequency and time domains and 
tentatively modelled in terms partial charge screening 
process [10-12]. Jonscher found that the power law is a 
manifestation of a universal mechanism in which the 
energy loss per cycle to the energy stored per cycle is 
independent of frequency rather than being the result 
of superposition of Debye like loss with distribution of 
relaxation time as in CC, CD, HN and KWW. Jonscher’s 
empirical form of dielectric loss is:
ε''(ω)∝[(ω/ω2)-m+(ω/ω1)(1-n)]-1		                          (5)

where m and (1-n) are both smaller than unity, ω1, 
ω2 and ωp are thermally activated hopping parameters. 
In a log(frequency) vs log(dielectric loss) plot the UDR is 
asymmetric with respect to loss peak having slope m<1 
below the loss peak and (1-n)< -1 above loss peak and 
having FWHM greater than the Debye dielectric loss 
FWHM of 1.144 decades, and normally m is greater than 
n. The empirical form for polarization current Eq. (5) is 
proposed as 

i(t)∝[(tωp)1+m+(tωp)n]-1.		                                         (6)
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A change in slope has been shown in double 
logarithmic time-domain plot with sum of two consecutive 
independent displacement current in the material medium. 
Jonscher’s empirical form of dielectric function exponent’s 
(n, m) are not related each other, and the exponents αCC, 
βCC, (αHN, βHN) and βKWW and their use in dielectric loss data 
interpretation is still debatable in the literature.  

3.  Debye and fractional Debye type dipole 
dielectric functions
3.1 Debye and fractional Debye type dipole process

Let the condensed matter system consist of molecules 
with reorientation of dipolar entities with Debye type 
dipole moment G0. In an electric field under a given 
thermodynamic condition, the instantaneous transfer of 
dipole moment G0 is not possible for a given molecular 
process due to intermolecular Debye type dipole-dipole 
interactions. The fraction of Debye type dipole that has not 
been transferred instantaneously is defined as ±G=(1-gd)
G0, where 0<gd<1.  The consequence of these interaction is 
the shift in the magnitude of Debye dipole moment G0 by 
an equal magnitude of ±G=(1-gd)G0 as illustrated in Fig.1. 
Debye type G0 dipoles evolved with these interaction as 
fractional Debye type dipoles [19,20]:

G+=G0+G=(2-gd)G0, and G−=G0-G=gdG0,	                        (7)

where N number of Debye type G0 per unit volume 
and becomes N/2 pairs of G±, and dipole moment of G+ 
and G− is increased and decreased respectively by a factor 
of (1-gd) with respect to G0. These type of dipole moment 
evolution in condensed matter systems lead to potential 
energy landscaping, a complicated dependence of energy 
on configuration, and a change in configurational entropy 
and a change in fragility, a measure of rapidity with which 
the liquid’s properties like viscosity changes.  

The average dipole moment is determined by using 
Langevin function for Debye type dipole and fractional 
Debye type dipole and it is found to be:  

<µi>=µiL(zi), L(zi)=coth(zi)-1/zi                                              (8)

where zi=µiE/(kBT), E is external applied electric 
field, the symbols <> stand for ensemble average for the  
dipoles and µi stands for the dipoles G0, G+ and G−. The 
statistical distribution of irreversible processes follows the 
Boltzmann factor exp[-(Ui/kBT)], Ui=Gicos(θi)E, where the 
energy of G0, is redistributed through, G−, and G+, such 
that total energy is conserved, and θi is angle between 
dipole moment and E. In Fig.1, in the right panel, for 
zi>>1 the L(zi)=1-1/zi and approaches to one, however, 
for low field limit zi<<1, the linear regime L(zi)=(1/3)zi 
and saturation depends on fractional Debye type dipole 
strength gd. The energy and moment of the dipole G− and 
G+ is shifted with respect to G0, in equal magnitude, and 
the total energy and moment of the system is conserved. 
Since, the energy of Debye dipole G0 is redistributed 
through the fractional Debye type dipole pair G±, the 
dielectric loss spectra of G± spreads with respect Debye 
type dipole G0 dielectric loss spectra.    

3.2 Dielectric and relaxation functions for Debye type 
dipole G0 

Debye type dipole dielectric function provides 
unique information pertaining to the molecular process 
of matter, structure, chemical composition. The Debye 
relaxation function and Debye dielectric function for the 
non-interacting Debye type dipole G0 is the earliest known 
functions for the description of dielectric relaxation process 
and it can be obtained Laplace transform of negative 
derivative of dielectric relaxation function and it is found 
to be: 
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limits. The normalized Debye function Eq. (9a) has 
dielectric loss peak ωτD=tan(π/4)=1, which is symmetric 
on a log-log plot having slope 1 on the left side and -1 on 
the right side of loss peak respectively and has full width 
at half maximum (FWHM) of 1.144 decades [10].   

3.3  Dielectric and relaxation functions for the fractional 
Debye type dipole G− 

The complex dielectric function for the fractional 
Debye type dipole G−=gdG0 is obtained by incorporating 
the consequence of −G=(1-gd)G0 on G0, where
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Fig. 1: Scheme showing Debye type dipole G0 (black vector, gd=1) and fractional Debye type dipole G� (red vector) and G+ 

(blue vector) on the left panel, 0<gd<1. Langevin functions for the Debye type dipole G0 (black line, gd=1) and fractional Debye 

type dipole G� (red line) and G+ (blue line) for 0<gd<1. 

 
The average dipole moment is determined by using Langevin function for Debye type dipole and fractional 

Debye type dipole and it is found to be:   
 

<�i>=�iL(zi), L(zi)=coth(zi)-1/zi                                       (8) 
 
where zi=�iE/(kBT), E is external applied electric field, the symbols <> stand for ensemble average for the  dipoles 

and �i stands for the dipoles G0, G+ and G�. The statistical distribution of irreversible processes follows the 
Boltzmann factor exp[-(Ui/kBT)], Ui=Gicos(�i)E, where the energy of G0, is redistributed through, G�, and G+, such 
that total energy is conserved, and �i is angle between dipole moment and E. In Fig.1, in the right panel, for zi>>1 
the L(zi)=1-1/zi and approaches to one, however, for low field limit zi<<1, the linear regime L(zi)=(1/3)zi and 
saturation depends on fractional Debye type dipole strength gd. The energy and moment of the dipole G� and G+ is 
shifted with respect to G0, in equal magnitude, and the total energy and moment of the system is conserved. Since, 
the energy of Debye dipole G0 is redistributed through the fractional Debye type dipole pair G±, the dielectric loss 
spectra of G± spreads with respect Debye type dipole G0 dielectric loss spectra.     
 
3.2  Dielectric and relaxation functions for Debye type dipole G0  

 
Debye type dipole dielectric function provides unique information pertaining to the molecular process of 

matter, structure, chemical composition. The Debye relaxation function and Debye dielectric function for the non-
interacting Debye type dipole G0 is the earliest known functions for the description of dielectric relaxation process 
and it can be obtained Laplace transform of negative derivative of dielectric relaxation function and it is found to be:                   (9a)  
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complex dielectric functions are obtained for the fractional Debye type dipole G�=gdG0 by changing the Laplace 

transform variables    and    ,    as   ,    ,  , 
                            (10a)                     ,     ,  0<gd<1, 

                   ,           (10b) 

where          ,                   (10c) 

      

is the dielectric strength of G� which is differ from Debye type dielectric strength,   and  are the high and low 
external frequency dielectric limits respectively, N is G� dipole density. This is similar to CC type complex 

dielectric function [3], however,   is different from   since number density N and average dipole 

strength are altered by the manifestation of ‘many-particle’ like intermolecular interaction mechanism. The 
fractional Debye type dipole strength indicate strength of interaction in terms of exponent when 0<gd<1, and for the 
Debye type dipole process, gd=1 and it is a manifestation of ‘single-particle’ like molecular interaction mechanism. 
          
3.4  Dielectric and relaxation functions for the fractional Debye type dipole G+. 

  

 The complex dielectric function for fractional Debye type dipole G+=gdG0 is obtained by incorporating the 
consequence of +G=(1-gd)G0 on G0, where  is the Debye type dipole complex dielectric function. The 
consequence of G on the Debye type dielectric function and complex dielectric function is shifting of the Debye 

type dipole relaxation term , and  by a factor of ,  and hence the 
Debye type dipole terms,  and  become fractional Debye type dipole relaxation terms in the time domain 

as (  , in the frequency domain as   . In terms of dipole energy, the Debye type dipole energy is increased by a factor of (1-gd). The 
dielectric relaxation and complex dielectric functions are obtained for the fractional Debye type dipole G+=(2-gd)G0 

by changing the Laplace transform variables     and    ,    as   ,    ,   , 
                             (11a)                     ,    ,  0<gd<1, 
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fractional Debye type dipole strength indicate strength of interaction in terms of exponent when 0<gd<1, and for the 
Debye type dipole process, gd=1 and it is a manifestation of ‘single-particle’ like molecular interaction mechanism. 
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is the dielectric strength of G+ which is differ from dielectric strength of G�,  and  are the high and low 
external frequency permittivity limits respectively, N is G+ dipole density. Equation (11b) is completely different 
from CC type complex dielectric function and it is second consecutive secondary fractional Debye type dipole 

process dielectric function related to Debye type dipole dielectric relaxation process. The   is different from 

 and 

complex dielectric functions are obtained for the fractional Debye type dipole G�=gdG0 by changing the Laplace 
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is the dielectric strength of G� which is differ from Debye type dielectric strength,   and  are the high and low 
external frequency dielectric limits respectively, N is G� dipole density. This is similar to CC type complex 

dielectric function [3], however,   is different from   since number density N and average dipole 

strength are altered by the manifestation of ‘many-particle’ like intermolecular interaction mechanism. The 
fractional Debye type dipole strength indicate strength of interaction in terms of exponent when 0<gd<1, and for the 
Debye type dipole process, gd=1 and it is a manifestation of ‘single-particle’ like molecular interaction mechanism. 
          
3.4  Dielectric and relaxation functions for the fractional Debye type dipole G+. 

  

 The complex dielectric function for fractional Debye type dipole G+=gdG0 is obtained by incorporating the 
consequence of +G=(1-gd)G0 on G0, where  is the Debye type dipole complex dielectric function. The 
consequence of G on the Debye type dielectric function and complex dielectric function is shifting of the Debye 

type dipole relaxation term , and  by a factor of ,  and hence the 
Debye type dipole terms,  and  become fractional Debye type dipole relaxation terms in the time domain 

as (  , in the frequency domain as   . In terms of dipole energy, the Debye type dipole energy is increased by a factor of (1-gd). The 
dielectric relaxation and complex dielectric functions are obtained for the fractional Debye type dipole G+=(2-gd)G0 
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is the dielectric strength of G+ which is differ from dielectric strength of G�,  and  are the high and low 
external frequency permittivity limits respectively, N is G+ dipole density. Equation (11b) is completely different 
from CC type complex dielectric function and it is second consecutive secondary fractional Debye type dipole 

process dielectric function related to Debye type dipole dielectric relaxation process. The   is different from  is different from , since 
number density N and average dipole strength are altered 
by the manifestation of ‘many-particle’ intermolecular 
interaction mechanism. The fractional Debye type dipole 
strength indicate strength of interaction in terms of 
exponent 0<gd<1.  

3.5  Unique non-Debye relaxation and the energy 
criterion

We have shown unique NDR process in Eqs. (9)-(11) 
both in  frequency-time domains consists of (a) primary 
Debye type dipole process dielectric response  and and (b) 
two consecutive secondary fractional Debye type dipole 
processes dielectric response and , and  and containing 
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the primary process in both the consecutive secondary 
processes, where total energy loss of Debye type dipole 
process and total Debye type dipole moments are 
conserved. Energy criterion for proposed model is shown 
in terms energy loss  and energy storage  of G0, G−, and 
G+. For the dipole density N of Debye type dipoles G0 
(absence of dipole-dipole interactions) the energy criterion 
is given by classical case of Debye dielectric response, and 
the ratio of energy loss and energy storage is obtained by 
Eq. (9a) as:    

9 
 

  

[𝑖�(𝑡)]𝑮+ ∝ [𝜙�(𝑡)]𝑮+ ∝ 𝑒𝑥𝑝 �− � 𝑡
𝜏�
�
�−��� ∝ 𝑒𝑥𝑝 �− �𝑇Γ�𝑮+

�,                (11a)                  

(𝑇)𝑮+ = 𝑡�−�� , (Γ)𝑮− = 𝜏�
�−��,  0<gd<1, 

 

[𝜖�∗(𝜔)]𝑮+ = (∆𝜖)𝑮+
1+𝑖��(𝜔𝜏�)�−�� = � ��

1+�Γ�𝑮+
, (𝑠)𝑮+ = (𝒔)𝑮0

((−𝒔)−(1−��))𝑮0
, (Γ)𝑮+ = 𝜏�

�� , 𝑠 = 𝑖𝜔, (11b)  

 
where 
 

(∆𝜖)𝑮+ = (𝜖𝑠 − 𝜖�)𝑮+ = 𝑁
�

�+�
�𝜖0��𝑇

− 𝜖�,                 (11c)   

      
is the dielectric strength of G+ which is differ from dielectric strength of G, 𝜖𝑠 and 𝜖� are 

the high and low external frequency permittivity limits respectively, N is G+ dipole density. 

Equation (11b) is completely different from CC type complex dielectric function and it is 

second consecutive secondary fractional Debye type dipole process dielectric function related 

to Debye type dipole dielectric relaxation process. The (∆𝜖)𝑮+ is different from (∆𝜖)𝑮0, since 

number density N and average dipole strength are altered by the manifestation of ‘many-

particle’ intermolecular interaction mechanism. The fractional Debye type dipole strength 

indicate strength of interaction in terms of exponent 0<gd<1.   

 
2.5 Unique non-Debye relaxation and the energy criterion 
 

We have shown unique NDR process in Eqs. (9)-(11) both in  frequency-time 

domains consists of (a) primary Debye type dipole process dielectric response [𝜖�∗(𝜔)]𝑮0 and 

[𝑖�(𝑡)]𝑮0and (b) two consecutive secondary fractional Debye type dipole processes dielectric 

response [𝜖�∗(𝜔)]𝑮−and [𝜖�∗(𝜔)]𝑮+, and [𝑖�(𝑡)]𝑮 and [𝑖�(𝑡)]𝑮+containing the primary 

process in both the consecutive secondary processes, where total energy loss of Debye type 

dipole process and total Debye type dipole moments are conserved. Energy criterion for 

proposed model is shown in terms energy loss 𝜖���(𝜔) and energy storage 𝜖�� (𝜔) of G0, G, 

and G+. For the dipole density N of Debye type dipoles G0 (absence of dipole-dipole 

interactions) the energy criterion is given by classical case of Debye dielectric response, and 

the ratio of energy loss and energy storage is obtained by Eq. (9a) as:     

 

 �𝜖�
��(𝜔)
𝜖�� (𝜔)�𝑮0

= −(𝜔𝜏�)𝑮0, at =1/D, (𝜔𝜏�)𝑮0 =tan(/4)=1, gd=1,              (12) 

 (12)

where the real and imaginary parts of 

 , since number density N and average dipole strength are altered by the manifestation of ‘many-particle’ 

intermolecular interaction mechanism. The fractional Debye type dipole strength indicate strength of interaction in 
terms of exponent 0<gd<1.   
 
3.5  Unique non-Debye relaxation and the energy criterion 
 

We have shown unique NDR process in Eqs. (9)-(11) both in  frequency-time domains consists of (a) 

primary Debye type dipole process dielectric response   and and (b) two consecutive 

secondary fractional Debye type dipole processes dielectric response  and  , and  

and containing the primary process in both the consecutive secondary processes, where total energy loss 

of Debye type dipole process and total Debye type dipole moments are conserved. Energy criterion for proposed 

model is shown in terms energy loss  and energy storage   of G0, G�, and G+. For the dipole density 
N of Debye type dipoles G0 (absence of dipole-dipole interactions) the energy criterion is given by classical case of 
Debye dielectric response, and the ratio of energy loss and energy storage is obtained by Eq. (9a) as:     

    , at �=1/�D,  tan(�/4)=1, gd=1,              (12) 

 

where the real and imaginary parts of    are,  

          .                  (13) 

 
As explained earlier, Debye type dipole-dipole molecular interaction and their evolution transform the N dipoles 
into N/2 dipoles of G� and N/2 dipoles of G+ by distributing the Debye type dipole energy and moment, where the 
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As explained earlier, Debye type dipole-dipole 
molecular interaction and their evolution transform the N 
dipoles into N/2 dipoles of G− and N/2 dipoles of G+ by 
distributing the Debye type dipole energy and moment, 
where the total Debye type dipole moment and energy is 
conserved in the processes. For the fractional type Debye 
type dipoles G−, the energy criterion is similar to the 
classical case of Debye dielectric response result with a 
dispersion different from classical case of Debye dielectric 
response and the ratio of energy loss and energy storage 
is obtained by using Eq. (10b) as:

 

                                                                                       (14)

 where the real and imaginary parts of 

 , since number density N and average dipole strength are altered by the manifestation of ‘many-particle’ 

intermolecular interaction mechanism. The fractional Debye type dipole strength indicate strength of interaction in 
terms of exponent 0<gd<1.   
 
3.5  Unique non-Debye relaxation and the energy criterion 
 

We have shown unique NDR process in Eqs. (9)-(11) both in  frequency-time domains consists of (a) 

primary Debye type dipole process dielectric response   and and (b) two consecutive 

secondary fractional Debye type dipole processes dielectric response  and  , and  

and containing the primary process in both the consecutive secondary processes, where total energy loss 

of Debye type dipole process and total Debye type dipole moments are conserved. Energy criterion for proposed 

model is shown in terms energy loss  and energy storage   of G0, G�, and G+. For the dipole density 
N of Debye type dipoles G0 (absence of dipole-dipole interactions) the energy criterion is given by classical case of 
Debye dielectric response, and the ratio of energy loss and energy storage is obtained by Eq. (9a) as:     

    , at �=1/�D,  tan(�/4)=1, gd=1,              (12) 

 

where the real and imaginary parts of    are,  

          .                  (13) 

 
As explained earlier, Debye type dipole-dipole molecular interaction and their evolution transform the N dipoles 
into N/2 dipoles of G� and N/2 dipoles of G+ by distributing the Debye type dipole energy and moment, where the 
total Debye type dipole moment and energy is conserved in the processes. For the fractional type Debye type dipoles 
G�, the energy criterion is similar to the classical case of Debye dielectric response result with a dispersion different 
from classical case of Debye dielectric response and the ratio of energy loss and energy storage is obtained by using 
Eq. (10b) as: 
  

       , at �=1/�d, 
        , 0<gd<1,            (14) 

 

where the real and imaginary parts of  are,  

                 .           (15) 

 
For the fractional type Debye type dipoles G+, the energy criterion is again similar to the classical case of Debye 
dielectric response result with a dispersion different from classical case of Debye dielectric response and the ratio of 
energy loss and energy storage is obtained by using Eq. (11b) as: 
          , at �=1/�d,  

        , 0<gd<1,    (16) 

 

where the real and imaginary parts of    are,  

                 .            (17) 

 

 are, 

 
 

 , since number density N and average dipole strength are altered by the manifestation of ‘many-particle’ 

intermolecular interaction mechanism. The fractional Debye type dipole strength indicate strength of interaction in 
terms of exponent 0<gd<1.   
 
3.5  Unique non-Debye relaxation and the energy criterion 
 

We have shown unique NDR process in Eqs. (9)-(11) both in  frequency-time domains consists of (a) 

primary Debye type dipole process dielectric response   and and (b) two consecutive 

secondary fractional Debye type dipole processes dielectric response  and  , and  

and containing the primary process in both the consecutive secondary processes, where total energy loss 

of Debye type dipole process and total Debye type dipole moments are conserved. Energy criterion for proposed 

model is shown in terms energy loss  and energy storage   of G0, G�, and G+. For the dipole density 
N of Debye type dipoles G0 (absence of dipole-dipole interactions) the energy criterion is given by classical case of 
Debye dielectric response, and the ratio of energy loss and energy storage is obtained by Eq. (9a) as:     

    , at �=1/�D,  tan(�/4)=1, gd=1,              (12) 

 

where the real and imaginary parts of    are,  

          .                  (13) 

 
As explained earlier, Debye type dipole-dipole molecular interaction and their evolution transform the N dipoles 
into N/2 dipoles of G� and N/2 dipoles of G+ by distributing the Debye type dipole energy and moment, where the 
total Debye type dipole moment and energy is conserved in the processes. For the fractional type Debye type dipoles 
G�, the energy criterion is similar to the classical case of Debye dielectric response result with a dispersion different 
from classical case of Debye dielectric response and the ratio of energy loss and energy storage is obtained by using 
Eq. (10b) as: 
  

       , at �=1/�d, 
        , 0<gd<1,            (14) 

 

where the real and imaginary parts of  are,  

                 .           (15) 

 
For the fractional type Debye type dipoles G+, the energy criterion is again similar to the classical case of Debye 
dielectric response result with a dispersion different from classical case of Debye dielectric response and the ratio of 
energy loss and energy storage is obtained by using Eq. (11b) as: 
          , at �=1/�d,  

        , 0<gd<1,    (16) 

 

where the real and imaginary parts of    are,  

                 .            (17) 

 

 , since number density N and average dipole strength are altered by the manifestation of ‘many-particle’ 

intermolecular interaction mechanism. The fractional Debye type dipole strength indicate strength of interaction in 
terms of exponent 0<gd<1.   
 
3.5  Unique non-Debye relaxation and the energy criterion 
 

We have shown unique NDR process in Eqs. (9)-(11) both in  frequency-time domains consists of (a) 

primary Debye type dipole process dielectric response   and and (b) two consecutive 

secondary fractional Debye type dipole processes dielectric response  and  , and  

and containing the primary process in both the consecutive secondary processes, where total energy loss 

of Debye type dipole process and total Debye type dipole moments are conserved. Energy criterion for proposed 

model is shown in terms energy loss  and energy storage   of G0, G�, and G+. For the dipole density 
N of Debye type dipoles G0 (absence of dipole-dipole interactions) the energy criterion is given by classical case of 
Debye dielectric response, and the ratio of energy loss and energy storage is obtained by Eq. (9a) as:     

    , at �=1/�D,  tan(�/4)=1, gd=1,              (12) 

 

where the real and imaginary parts of    are,  

          .                  (13) 

 
As explained earlier, Debye type dipole-dipole molecular interaction and their evolution transform the N dipoles 
into N/2 dipoles of G� and N/2 dipoles of G+ by distributing the Debye type dipole energy and moment, where the 
total Debye type dipole moment and energy is conserved in the processes. For the fractional type Debye type dipoles 
G�, the energy criterion is similar to the classical case of Debye dielectric response result with a dispersion different 
from classical case of Debye dielectric response and the ratio of energy loss and energy storage is obtained by using 
Eq. (10b) as: 
  

       , at �=1/�d, 
        , 0<gd<1,            (14) 

 

where the real and imaginary parts of  are,  

                 .           (15) 

 
For the fractional type Debye type dipoles G+, the energy criterion is again similar to the classical case of Debye 
dielectric response result with a dispersion different from classical case of Debye dielectric response and the ratio of 
energy loss and energy storage is obtained by using Eq. (11b) as: 
          , at �=1/�d,  

        , 0<gd<1,    (16) 

 

where the real and imaginary parts of    are,  

                 .            (17) 

 

                                                                                       (15)

For the fractional type Debye type dipoles G+, the 
energy criterion is again similar to the classical case of 
Debye dielectric response result with a dispersion different 
from classical case of Debye dielectric response and the 
ratio of energy loss and energy storage is obtained by 
using Eq. (11b) as:

 
                   (16)

where the real and imaginary parts of 

 , since number density N and average dipole strength are altered by the manifestation of ‘many-particle’ 

intermolecular interaction mechanism. The fractional Debye type dipole strength indicate strength of interaction in 
terms of exponent 0<gd<1.   
 
3.5  Unique non-Debye relaxation and the energy criterion 
 

We have shown unique NDR process in Eqs. (9)-(11) both in  frequency-time domains consists of (a) 

primary Debye type dipole process dielectric response   and and (b) two consecutive 

secondary fractional Debye type dipole processes dielectric response  and  , and  

and containing the primary process in both the consecutive secondary processes, where total energy loss 

of Debye type dipole process and total Debye type dipole moments are conserved. Energy criterion for proposed 

model is shown in terms energy loss  and energy storage   of G0, G�, and G+. For the dipole density 
N of Debye type dipoles G0 (absence of dipole-dipole interactions) the energy criterion is given by classical case of 
Debye dielectric response, and the ratio of energy loss and energy storage is obtained by Eq. (9a) as:     

    , at �=1/�D,  tan(�/4)=1, gd=1,              (12) 

 

where the real and imaginary parts of    are,  

          .                  (13) 

 
As explained earlier, Debye type dipole-dipole molecular interaction and their evolution transform the N dipoles 
into N/2 dipoles of G� and N/2 dipoles of G+ by distributing the Debye type dipole energy and moment, where the 
total Debye type dipole moment and energy is conserved in the processes. For the fractional type Debye type dipoles 
G�, the energy criterion is similar to the classical case of Debye dielectric response result with a dispersion different 
from classical case of Debye dielectric response and the ratio of energy loss and energy storage is obtained by using 
Eq. (10b) as: 
  

       , at �=1/�d, 
        , 0<gd<1,            (14) 

 

where the real and imaginary parts of  are,  

                 .           (15) 

 
For the fractional type Debye type dipoles G+, the energy criterion is again similar to the classical case of Debye 
dielectric response result with a dispersion different from classical case of Debye dielectric response and the ratio of 
energy loss and energy storage is obtained by using Eq. (11b) as: 
          , at �=1/�d,  

        , 0<gd<1,    (16) 

 

where the real and imaginary parts of    are,  

                 .            (17) 

 

are , 

 

 , since number density N and average dipole strength are altered by the manifestation of ‘many-particle’ 

intermolecular interaction mechanism. The fractional Debye type dipole strength indicate strength of interaction in 
terms of exponent 0<gd<1.   
 
3.5  Unique non-Debye relaxation and the energy criterion 
 

We have shown unique NDR process in Eqs. (9)-(11) both in  frequency-time domains consists of (a) 

primary Debye type dipole process dielectric response   and and (b) two consecutive 

secondary fractional Debye type dipole processes dielectric response  and  , and  

and containing the primary process in both the consecutive secondary processes, where total energy loss 

of Debye type dipole process and total Debye type dipole moments are conserved. Energy criterion for proposed 

model is shown in terms energy loss  and energy storage   of G0, G�, and G+. For the dipole density 
N of Debye type dipoles G0 (absence of dipole-dipole interactions) the energy criterion is given by classical case of 
Debye dielectric response, and the ratio of energy loss and energy storage is obtained by Eq. (9a) as:     

    , at �=1/�D,  tan(�/4)=1, gd=1,              (12) 

 

where the real and imaginary parts of    are,  

          .                  (13) 

 
As explained earlier, Debye type dipole-dipole molecular interaction and their evolution transform the N dipoles 
into N/2 dipoles of G� and N/2 dipoles of G+ by distributing the Debye type dipole energy and moment, where the 
total Debye type dipole moment and energy is conserved in the processes. For the fractional type Debye type dipoles 
G�, the energy criterion is similar to the classical case of Debye dielectric response result with a dispersion different 
from classical case of Debye dielectric response and the ratio of energy loss and energy storage is obtained by using 
Eq. (10b) as: 
  

       , at �=1/�d, 
        , 0<gd<1,            (14) 

 

where the real and imaginary parts of  are,  

                 .           (15) 

 
For the fractional type Debye type dipoles G+, the energy criterion is again similar to the classical case of Debye 
dielectric response result with a dispersion different from classical case of Debye dielectric response and the ratio of 
energy loss and energy storage is obtained by using Eq. (11b) as: 
          , at �=1/�d,  

        , 0<gd<1,    (16) 

 

where the real and imaginary parts of    are,  

                 .            (17) 

 

 , since number density N and average dipole strength are altered by the manifestation of ‘many-particle’ 

intermolecular interaction mechanism. The fractional Debye type dipole strength indicate strength of interaction in 
terms of exponent 0<gd<1.   
 
3.5  Unique non-Debye relaxation and the energy criterion 
 

We have shown unique NDR process in Eqs. (9)-(11) both in  frequency-time domains consists of (a) 

primary Debye type dipole process dielectric response   and and (b) two consecutive 

secondary fractional Debye type dipole processes dielectric response  and  , and  

and containing the primary process in both the consecutive secondary processes, where total energy loss 

of Debye type dipole process and total Debye type dipole moments are conserved. Energy criterion for proposed 

model is shown in terms energy loss  and energy storage   of G0, G�, and G+. For the dipole density 
N of Debye type dipoles G0 (absence of dipole-dipole interactions) the energy criterion is given by classical case of 
Debye dielectric response, and the ratio of energy loss and energy storage is obtained by Eq. (9a) as:     

    , at �=1/�D,  tan(�/4)=1, gd=1,              (12) 

 

where the real and imaginary parts of    are,  

          .                  (13) 

 
As explained earlier, Debye type dipole-dipole molecular interaction and their evolution transform the N dipoles 
into N/2 dipoles of G� and N/2 dipoles of G+ by distributing the Debye type dipole energy and moment, where the 
total Debye type dipole moment and energy is conserved in the processes. For the fractional type Debye type dipoles 
G�, the energy criterion is similar to the classical case of Debye dielectric response result with a dispersion different 
from classical case of Debye dielectric response and the ratio of energy loss and energy storage is obtained by using 
Eq. (10b) as: 
  

       , at �=1/�d, 
        , 0<gd<1,            (14) 

 

where the real and imaginary parts of  are,  

                 .           (15) 

 
For the fractional type Debye type dipoles G+, the energy criterion is again similar to the classical case of Debye 
dielectric response result with a dispersion different from classical case of Debye dielectric response and the ratio of 
energy loss and energy storage is obtained by using Eq. (11b) as: 
          , at �=1/�d,  

        , 0<gd<1,    (16) 

 

where the real and imaginary parts of    are,  

                 .            (17) 

 

 
                                                                                             

 (17)

The proposed model is a coupled form Debye type 
dipole and fractional Debye type dipole processes and the 
primary relaxation time is Debye type dipole relaxation 
time, and it is designated as τD, where the exponent gd=1, 
and when 0<gd<1, the relaxation time is designated as τd. 
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processes and the primary relaxation time is Debye type dipole relaxation time, and it is 
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(green thick line gd=0.4, thin line gd=0.6) polarization (left panel). The 
red arrow indicates Debye relaxation time (1s), and the red dots indicate 
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gd=0.6, and 0.4 as red dashed and blue dotted lines and green thick and thin lines are sum of fractional Debye type 
dipole polarization for gd=0.6 and 0.4. Exactly similar features are observed in the frequency-domain dielectric 

response. The red arrow indicates Debye relaxation time (1s). The red dots indicate slow relaxation time  and blue 

dots indicate fast relaxation time  for gd=0.6, and 0.4 respectively.  These time scales are defined as NDR times 

due to the fractional Debye type dipole processes and it is dynamically correlated to the Debye type dipole 

relaxation time �D. The right panel shows NDR times  and  as function interaction strength gd based on Eqs. 

(18) & (19).   
 

The salient features of slow and fast relaxation time scales are (a) the shift in Debye type relaxation time �D 
in equal magnitude on both side of Debye relaxation time (b) the magnitude of the shift in time scale depends on 
strength of fractional Debye type dipole in terms 0<gd<1, and smaller the magnitude gd, stronger is the interaction 
strength and larger is the shifts in slow and fast relaxation times. (c) In the frequency-domain, the slow and fast 
relaxation times belong to left side and right side of Debye loss peak respectively for given gd and vice-versa in the 
time-domain Debye type polarization. These are novel result on the relaxation dynamics of the proposed model.  
 

When the dielectric loss spectra has more than one process loss peak contributions, like, high frequency 
loss peak �, in addition to low frequency loss peak �, then the similar fractional Debye type contribution process is 
considered for the loss peak �. If the dielectric loss spectra has ‘n’ number fractional Debye type dipole processes 
and if there is loss contribution due dc conductivity �dc, as observed in several glass forming alcohols, then the 
complex dielectric function and relaxation function become: 
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Here ‘n’ may be treated as number of subunit or subgroup or subunit of cluster of molecular level polarization 
processes contributing to the complex dielectric and polarization relaxation with their respective Debye type dipole 
and fractional Debye type dipole processes. In a nutshell, in a molecular level, for ‘n’ number of Debye type and 
their corresponding molecular level interaction initiated fractional Debye dipoles, the polarization mechanism and 
their dielectric function is found to be:      ,                (22) 
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    ,               (24) 

where ‘n’ represents n number of unique NDR processes having n number of temporal and spatial scales due to the n 
number of Debye type dipole and their respective fractional Debye type polarization relaxation processes.   

 
The relaxation time of glass formers shows a deviation from Arrhenius law and it is parameterized with 

Vogel-Fulcher-Tamman (VFT) equation [21]:  
 

(�d)n=(�0exp(A0T0/(T-T0)))n, for T > Tg,                  (25) 
 
where n=1, 2, …,  T0 is the VFT approximation of the ideal glass transition temperature, A0 is the strength 
parameter, �0 is a pre-factor of the order inverse phonon frequency and further characterized based on fragility index 
[21],  

mp=log10(e)(A0(T0/Tg)(1�T0/Tg)
-2)n,                (26) 

where Arrhenius equation is   
(�d)n=(�0exp(Ea/kBT))n,                (27)  

with Ea is activation energy. The relaxation parameters resulting from the fits are shown and the relaxation times are 
checked for Arrhenius or Vogel–Fulcher–Tammann (VFT) behavior. 
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 as function interaction strength gd based 
on Eqs. (18) & (19). 

3.6 Slow and fast relaxation times in the fractional Debye 
type dipole process 

According to the proposed model both Debye type 
and fractional Debye dipole processes have relaxation time 
τD=τd and it is a primary relaxation time.   Then,   what is 
the relaxation time for the fractional Debye type dipole 
process? A careful analysis of Debye type dipole and the 
fractional Debye type dipole energy criterion provided two 
relaxation time scales correlated to primary relaxation time 
τD. By equating Debye type dipole process dielectric loss 
energy to fractional Debye type dipole process dielectric 
loss energy,
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considered for the loss peak �. If the dielectric loss spectra has ‘n’ number fractional Debye type dipole processes 
and if there is loss contribution due dc conductivity �dc, as observed in several glass forming alcohols, then the 
complex dielectric function and relaxation function become: 
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         .                        (21) 

 
Here ‘n’ may be treated as number of subunit or subgroup or subunit of cluster of molecular level polarization 
processes contributing to the complex dielectric and polarization relaxation with their respective Debye type dipole 
and fractional Debye type dipole processes. In a nutshell, in a molecular level, for ‘n’ number of Debye type and 
their corresponding molecular level interaction initiated fractional Debye dipoles, the polarization mechanism and 
their dielectric function is found to be:      ,                (22) 

                   (23) 

    ,               (24) 

where ‘n’ represents n number of unique NDR processes having n number of temporal and spatial scales due to the n 
number of Debye type dipole and their respective fractional Debye type polarization relaxation processes.   

 
The relaxation time of glass formers shows a deviation from Arrhenius law and it is parameterized with 

Vogel-Fulcher-Tamman (VFT) equation [21]:  
 

(�d)n=(�0exp(A0T0/(T-T0)))n, for T > Tg,                  (25) 
 
where n=1, 2, …,  T0 is the VFT approximation of the ideal glass transition temperature, A0 is the strength 
parameter, �0 is a pre-factor of the order inverse phonon frequency and further characterized based on fragility index 
[21],  

mp=log10(e)(A0(T0/Tg)(1�T0/Tg)
-2)n,                (26) 

where Arrhenius equation is   
(�d)n=(�0exp(Ea/kBT))n,                (27)  

with Ea is activation energy. The relaxation parameters resulting from the fits are shown and the relaxation times are 
checked for Arrhenius or Vogel–Fulcher–Tammann (VFT) behavior. 
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where ‘n’ represents n number of unique NDR 
processes having n number of temporal and spatial scales 
due to the n number of Debye type dipole and their 
respective fractional Debye type polarization relaxation 
processes.  

The relaxation time of glass formers shows a deviation 
from Arrhenius law and it is parameterized with Vogel-
Fulcher-Tamman (VFT) equation [21]: 

(τd)n=(τ0exp(A0T0/(T-T0)))n,	 for T > Tg,                   (25)

where n=1, 2, …,  T0 is the VFT approximation of 
the ideal glass transition temperature, A0 is the strength 
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FIGURE 2. Polarization relaxation function for the Debye type dipole G0 polarization 
(dashed black line) and fractional Debye type dipole G (red small dotted line gd=0.6), 
G+ (blue bigger dotted line, gd=0.4) and G+G+ (green thick line gd=0.4, thin line gd=0.6) 
polarization (left panel). The red arrow indicates Debye relaxation time (1s), and the 
red dots indicate slow relaxation time 𝝉𝒔∗ and blue dots indicate fast relaxation time 𝝉𝒇∗  
for gd=0.6, 0.4 respectively.  These time scales are defined as NDR times due to the 
fractional Debye type dipole processes and it is dynamically correlated to the Debye 
type dipole relaxation time D. The right panel shows NDR times 𝝉𝒔∗ and 𝝉𝒇∗  as function 
interaction strength gd based on Eqs. (18) & (19).   
 

2.6 Slow and fast relaxation times in the fractional Debye type dipole process  
 

According to the proposed model both Debye type and fractional Debye dipole 

processes have relaxation time D=d and it is a primary relaxation time.   Then,   what is the 

relaxation time for the fractional Debye type dipole process? A careful analysis of Debye 

type dipole and the fractional Debye type dipole energy criterion provided two relaxation 

time scales correlated to primary relaxation time D. By equating Debye type dipole process 

dielectric loss energy to fractional Debye type dipole process dielectric loss energy, 

 
 [𝜖���(𝜔)]𝑮0 = [𝜖���(𝜔)]𝑮−  or [𝜖���(𝜔)]𝑮0 = [𝜖���(𝜔)]𝑮+  or  [𝜖���(𝜔)]𝑮0 = [𝜖���(𝜔)]𝑮− + [𝜖���(𝜔)]𝑮+ 
 
at the loss peak =1/d, we obtained slow and fast relaxation time with respect to primary 

relaxation time D respectively as:  

𝜏𝑠∗ = 1 𝜔𝑠
∗⁄ = 𝜏�(𝑐 + √𝑐� − 1), 0<gd<1, 𝜏𝑠∗=D, gd=1,            (18) 

 
𝜏�∗ = 1 𝜔�

∗⁄ = 𝜏�(𝑐 − √𝑐� − 1), 0<gd<1, 𝜏�∗=D, gd=1,             (19) 

where c=cot(gd/4) is the dielectric loss of G0 or G or G+ or G+G+ at the loss peak =1/d.  

The polarization relaxation for the Debye type dipole G0 (dashed black) and fractional Debye 
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parameter, τ0 is a pre-factor of the order inverse phonon 
frequency and further characterized based on fragility 
index [21], 

mp=log10(e)(A0(T0/Tg)(1−T0/Tg)-2)n, 	                                     (26)

where Arrhenius equation is 	

(τd)n=(τ0exp(Ea/kBT))n,                                                        (27) 

with Ea is activation energy. The relaxation parameters 
resulting from the fits are shown and the relaxation times 
are checked for Arrhenius or Vogel–Fulcher–Tammann 
(VFT) behavior.

3.7 Comparison with existing non-Debye relaxation   
In Fig. 3, in the left panel, the existing NDR functions 

KWW (numerical Fourier transform for βKWW=0.6), CC, 
CD, HN, UDR and proposed GG function are shown 
in double logarithmic plots. The empirical form of CC 
dielectric function has a slope (1-αCC) below the loss peak 
and -(1-αCC) above the loss peak and loss curve is symmetric 
about the loss peak.   

uninterpreted quantity and slope of the dielectric loss 
below the loss peak is always one and above loss peak is 
-βCD. The HN dielectric function was suggested when the 
slopes are different on both sides of dielectric loss peak, 
HN exponents (1-αHN) and βHN are physically uninterpreted 
quantities. However, the exponents of KWW, CC, CD 
and HN are used to describe distribution relaxation in 
NDR process. In Jonscher’s UDR, the exponents 0<m<1 
and 0<n<1 change the slopes of the dielectric loss curve 
asymmetrically with respect to loss peak having sum of two 
processes with exponents m and n. The energy criterion 
has been given for process involving only the exponent n 
and it is tentatively modeled in terms of partial screening 
mechanism. The time domain polarization functions for 
these existing empirical form of NDR are still a mystery, 
however, power laws and KWW function are approximated 
as possible polarization functions. It is clear from left panel 
of Fig. 3, the slop of proposed GG dielectric function in 
double logarithmic plots have completely different features 
when compared with existing empirical form of dielectric 
functions. The dielectric loss slope of sum of fractional 
Debye type dipole process varies between gd to 2-gd below 
and above the loss peak and also depends on dielectric 
strength 
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The fractional exponent (1-�CC) is explained in terms equivalent circuit with impedance polarization “denoting the 
storage of energy in addition to dissipation energy in the mechanism of molecular interaction responsible for 
dispersion”. The empirical function CD accounts for asymmetry in the dielectric loss observed several glass forming 
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4.  Dielectric loss data analysis
4.1  1-Cyanoadamantane

The dielectric loss data of 1-cyanoadamantane 
(C10H15CN, 1-CNA) are taken from Lunkenheimer’s 
research group [22,23].  1-CNA is a simple prototypical 
plastic crystal with carbon atoms form a cage, the free 
bonds being saturated by hydrogen atoms and one 
cyano-group.  Below the melting temperature (Tm=458 K) 
the plastic phase is formed and at T=280 K orientational 
order occurs. The dielectric loss data and schematic view 
of molecular structure as insets are shown on the top panel 
in Fig. 4 for the plastic-crystalline phase of 1-CNA. The 
data are shown as black dots. The data analysis covered 
on the plastic-crystalline phase having wide measured 
frequency range up to 20 GHz. Lunkenheimer’s research 
group have performed numerical Fourier transform of 
KWW function for the temperature dependent data of loss 
data of 1-CNA and found worse fit and hence they rejected 
KWW method. Further, the 1-CNA loss data were analyzed 
using empirical form of CD dielectric functions. For all the 
temperatures, the loss data did not fit well around two 
decades at high frequency region.   

Fig. 3: In the left panel, a comparison of frequency domain double 
logarithm plots of proposed unique NDR function (n=1) with existing 
NDR functions KWW (numerical Fourier transform for βKWW=0.6), CC, 
CD, HN, and UDR. The slope of lines to which peaks is asymptotic. 
Plots are vertically separated by 1.5 units for clarity. The dashed line 
is Debye type dielectric loss. The right panel shows further details of 
proposed dielectric loss contribution for Debye type dipole G0 and the 
fractional Debye type dipoles G−, G+ and their sum G−+G+. The slopes 
varies from gd to 2-gd on left side of the loss peak and -gd to -(2-gd) on 
right side of the loss peak The red and blue dots on the lines show the 
slow and fast relaxation times for gd=0.4.        

The fractional exponent (1-αCC) is explained in terms 
equivalent circuit with impedance polarization “denoting 
the storage of energy in addition to dissipation energy 
in the mechanism of molecular interaction responsible 
for dispersion”. The empirical function CD accounts for 
asymmetry in the dielectric loss observed several glass 
forming alcohols, however, the exponent βCD is physically 
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The dielectric loss data of 
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KWW function for the temperature dependent data of loss data of 
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Fig. 4: Fit results of dielectric loss of a simple van der Waals system plastic crystal 
1-cyanoadamentane (1-CNA) for T=280K shown on the top panel, where number of subunits 
of molecular process n contributed to dielectric loss is 1.  The dashed red and blue lines are 
Debye type dipole dielectric loss G0 and continuous red and blue lines and shades are fractional 
Debye type dipole G−, and G+ dielectric loss and green line and shade is sum of dipoles G−+G+ 
dielectric loss. The estimates of fit parameters (FP) and standard error (SE) are shown as an 
attachment. The panel in the middle shows temperature dependent loss data of 1-CNA with 
interaction strength gd. The G− and G+ dipole dielectric loss contributions are shown for 
T=260K and 420K. The double headed arrow indicates primary relaxation time. Arrhenius 
type temperature dependence Debye type relaxation time, slow and fast relaxation times are 
shown in right side of middle panel. The bottom panel shows dielectric strength and interaction 
strength as function of temperatures.

lines and shades are fractional Debye 
type dipole relaxation process where 
0<gd<1. 

In Fig. 4, the middle panel, the 
temperature dependence data are further 
analyzed for wide range of frequency and 
temperature dependent dielectric loss 
peaks are shown in form of Arrhenius 
plot. The straight line fit equation, 
slope and attempt frequency 1/τ0 are 
indicated in Fig. 4.   The slow and fast 
relaxation times are shown with Debye 
type relaxation time.  The bottom panel 
in Fig. 4 shows dielectric strengths 
and interaction strength gd as a function 
of temperature. The proposed model 
shows excellent fit for the entire region 
of frequency and provides new physical 
insight for the molecular motion in 
terms dipole-dipole interaction with the 
concept of Debye type and fractional 
Debye type dipole polarization.    

4.2  Dielectric loss data analysis of super-
cooled glycerol

The dielectric loss data of super-
cooled glycerol (C3H5(OH)3) are taken 
from Lunkenheimer’s research group 
[24]. The dielectric spectra and schematic 
view of molecular structure as insets 
are shown in Fig. 5 for the super-cooled 
phase of glycerol on the top panel to 
demonstrate the typical analysis of 
dielectric loss data based on Eq. (20). The 
glass transition temperature of glycerol 
Tg is 184K. In glycerol system σdc=0, and 
the number of subunits n contributing to 
the dielectric loss is found to be 2.  One 

The fit result based on Eq. (20) is shown in Fig. 4 for 
1-CNA loss data, where σdc=0, and n is found to be one. 
The estimate of fit parameters (FP) and standard errors (SE) 
attached in Fig. 4 of to panel. With simple orientational 
order, the Debye type dipole G0 and the interaction 
originated fractional Debye type dipoles G−=gdG0 and 
G+=(2-gd)G0, with gd=0.701 and their respective dielectric 
strength shows excellent fitting. During the molecular 
motion, the instantaneous transfer of Debye type dipole 
of G0 of 1-CNA molecule is incomplete by a factor (1-gd)
G0, and hence the fractional Debye type dipoles G− and 
G+ relaxation process initiated and fractional Debye type 
dipole takes over and resulting a spread in Debye type 
dipole dielectric spectra as shown in Fig. 4. The Debye 
type dipole are shown as dashed lines and the continuous 

of the challenging problems in the dielectric loss spectra is 
the excess wing in some of the glass forming systems and 
it is a common-feature without well resolved β relaxation. 
Lunkenheimer’s research group performed high precision 
aging experiments lasting up to five weeks, and they have 
shown the equilibrium spectra below Tg, showing up 
excess wing (long tail above the α peak) as a second power 
law at high frequencies, developed into a shoulder. Their 
results strongly suggested that the excess wing, observed 
in a variety of glass formers, is the high-frequency flank 
of a β relaxation.

In the present work, we have analyzed the dielectric 
loss spectra of glass-forming glycerol at temperature above 
and below Tg based on the proposed model. Typical result 
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Fig. 5: Fit results of dielectric loss of hydrogen bonded super-cooled 
glycerol is shown on the top panel, where number of subunits of 
molecular processes n contributed to the dielectric loss is 2.  The dashed 
red and blue lines are Debye type dipole (G0)1 and (G0)2 dielectric 
loss,  and continuous red and blue lines and shades are fractional 
Debye type dipole (G−+G+)1 and (G−+G+)2 dielectric loss and green 
line and shade is sum of dipoles (G−+G+)1+(G−+G+)2  dielectric loss. 
The estimates of fit parameters (FP) and standard error (SE) are 
shown as an attachment. The panel in the middle shows temperature 
dependent loss data of glycerol. For T=195K, black line is Debye type 
dipole (G0)1+(G0)2 dielectric loss, the dipole (G−+G+)1 and (G−+G+)2 
loss contribution are shown as red and blue dashed line. The VFT 
type temperature dependence relaxation time is shown in right side 
of middle panel with slow and fast relaxation times. The bottom 
panel shows dielectric strength and interaction strength as function 
temperature for glycerol for n=2.

of dielectric loss data of glycerol at 204K is shown in Fig. 5. 
The number of subunits n=2 is obtained for the dielectric 
loss data analysis and estimates of fit parameters (FP) and 
their standard errors (SE) are attached in Fig.5. Excellent fit 
parameters and fits are obtained for n=2, where there are 
two closely spaced times scales of motions are observed as 
two different Debye type dipole moments (G0)1 and (G0)2 
with their corresponding fractional Debye type dipole 
moments (gdG0)1 and ((2-gd)G0)1, (gdG0)2 and ((2-gd)G0)2 
where dipole-dipole interaction strengths are (gd)1=0.264 

and (gd)2=0.670 and two different Debye type relaxation 
times are (τd)1=2.35x10-2(s), (τd)2=7.94x10-3(s). Both Debye 
type dipoles and fractional Debye type dipoles and their 
sums are shown as dashed lines and continuous lies. The 
proposed model predicts the existence of mysterious high 
frequency flank of a α relaxation, though it is not well 
resolved in the dielectric loss data explicitly.

Similar fitting procedure is followed for other 
temperatures [24] and result are reported in the middle 
panel of Fig. 5. The double arrow around loss peak indicates 
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position of relaxation time (τd)1 and (τd)2. The temperature 
dependence of (τd)1 and (τd)2 shows VFT features and the 
VFT fit parameters and fragility are obtained based on 
Eqs. (25)-(26) as: 

(τ0)1=10-12.84±0.48, (A0)1=11.64±1.09, (T0)1=140.79±2.12, and the 
fragility (mp)1=70.2,

(τ0)2=10-14.53±0.54, (A0)2=15.16±1.51, (T0)2=133.42±2.54, and the 
fragility (mp)2=63.2.

The dielectric strength and interaction strength 
obtained based of fit results of dielectric loss data are 
shown in bottom panel in Fig.5 for n=1, and 2. The 
interaction strength for the subunit n=1 of the molecular 
process is found to be much stronger than n=2, and hence 
the excess wing or long tail in the dielectric loss is due 
the slow α process and it is clearly shown in Fig. 5, for 
T=195 as red dashed line in middle left panel. Figure 6 
shows the compiled dielectric loss data of ten different 
molecular systems based on proposed model at different 
temperatures. These data were collected from literature 
and analysed based on the proposed dielectric Eq. (20) and 
results are shown in Fig. 6. The list below shows dielectric 
system, temperature in Kelvin, reference, number of 

subunits n associated with molecular process contributing 
to dielectric loss, interaction strength and type of relaxation 
process:  

(1)	 Propylene carbonate@153 [25], (G±)1+(G±)2+(G±)3, 
(gd)1=0.674, (gd)2=0.132, (gd)3= 0.654, α, β and Boson 
peak (three pairs of (G±) loss show fifteen decades of 
frequency dependence!);

(2)	 TriPGG@193 [26], (G±)1+(G−)2, (gd)1=0.549,  (gd)2=0.277, 
α and β; 

(3)	 Ketoprofen@272 [13], (G−)1+(G−)2+(G−)3, (gd)1=0.631, 
(gd)2=0.893, (gd)3=0.204, α, β and γ;

(4)	 1-propanol@107.7 [27], (G−)1+(G−)2+(G−)3, (gd)1=0.997, 
(gd)2=0.617, (gd)3=0.411, Debye, α and β;

(5)	 Magnatite@20 [28], (G−)1+(G−)2, (gd)1=0.433, (gd)2 =0.698, 
α and β. The real part of  is shown as filled plot 
based on Eqs. (18) & (19).

(6)	 Propylene carbonate@160 [24], (G±)1+(G±)2, (gd)1=0.235, 
(gd)2=0.667, α and β;

(7)	 Ortho-carborane@163 (o-CA) [23], (G−)1+(G±)2, (gd)1=0.882, 
(gd)2=0.450, α and β;    

(8)	 Pentachlornitrobenzene@350 [23] (gd)1=1.0, (gd)2=0.805, α 
and β; 

(9)	 Meta-carborane@252 (m-CA) [23], (G−)1+(G−)2, (gd)1= 1.0, 
(gd)2=0.787, α and β; 

(10) Ethanol@231 [29], (G−)1, (gd)1=0.943, α; 

(11) Glycerol@363 [25], (G±)1+(G−)2, (gd)1=0.557, (gd)2=1.0, α 
and β. 	

5. Summary and conclusions
The existing time-honoured NDR functions with 

their exponents, βKWW, αCC, βCD, (αHN, βHN) and (m, n) were 
introduced 163, 76, 66, 50, and 43 years ago respectively. 
Still their use in dielectric loss analysis is piecemeal 
approach tailored to individual materials and often highly 
arbitrary.  The proposed Eqs. (20)-(24) have polarization 
relaxation dynamics of Debye type dipole G0 and fractional 
Debye type dipoles ±G, and G±, where ±G=(1-gd)G0, 
G−=G0−(1-gd)G0=gdG0, G+=G0+(1-gd)G0=(2-gd)G0 and 
these dipoles will open a window on one of Nature’s best-
kept secrets of NDR. The proposed model will heighten 
the understanding of NDR and physical insight for the 
dielectric loss of α, β and γ relaxations, excess wing, and 
closely related ac conductivity and mechanical relaxation. 
Hopefully, the proposed fractional Debye type model 
will be able to unify and encompass the existing NDR 
approach with an amendments.  The universal Debye 
type dipole relaxation and its associated fractional Debye 
type dipole relaxation dynamics with redistribution and 

Fig. 6: A compilation of dielectric loss data range of ten materials is 
shown covering frequency range of 15 decades. The schematic structure 
of these molecules with serial numbers and temperature of loss data are 
shown. (1) Propylene carbonate@153 (2) TriPGG (3) Ketoprofen   (4) 
1-propanol (5) Magnatite (6) Propylene carbonate@160 (7) Ortho-
carborane (8) Pentachloro-nitrobenzene (9) Meta-carborane (10) 
Ethanol (11) Glycerol. For each molecular system the number of subunits 
n of molecular processes contributing to the dielectric loss is indicated. 
The double headed arrow indicates dielectric loss contribution from both 
G− and G+, and single headed arrow indicates dielectric loss contribution 
from either G− or G+. Among G− and G+ the dielectric loss contributions, 
with respect to temperature variation, the dominant contribution is 
found to be G− as shown in Langevin function Fig. 1.  
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conservation of moment and energy in the storage and 
dissipation processes in the dielectric response are too 
striking and believed that one underlying principle of 
“molecular level many-body interactions between its 
constituent parts” governs the response of condensed 
matter to electromagnetic fields.  
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