IRISCAST: IRIS Carbon Audit Snapshot

J. Hays – IRIS Science Director
IRISCAST Project PI

IRIS Collaboration Meeting
12th January 2023
IRIS-CAST – The Carbon costing for computing Audit Snapshot

Good robust decisions need good robust information

IRISCAST is a 6 month project funded within the UKRI Net Zero Scoping Project

UKRI Net Zero Digital Research Infrastructure Scoping Project

https://net-zero-dri.ceda.ac.uk/
Martin Juckes, Charlotte Pascoe, Ag Stephens, Poppy Townsend, Katie Cartmell, Jen Bulpett

(Slide extracts from Martin Juckes)
Net-Zero Scoping Project

Project Ambition

- Collect **evidence to inform** UKRI Digital Research Infrastructure (DRI) Investment decisions
- Provide UKRI and their community with an **outline roadmap for achieving** carbon neutrality in their DRI by 2040 or sooner
- Enable UKRI to play a **positive and leading role** in the national and global transition to a sustainable economy

(Slide extracts from Martin Juckes)
Net-Zero Scoping Project

Partners

The core team is supported by partners from 20 institutions, bringing a huge range of experience.

(Slide extracts from Martin Juckes)
Net-Zero Scoping Project

The UKRI Net Zero DRI Scoping project contains 9 consortium projects (right) and has funded 7 additional projects (left) through a sandpit event. These projects will investigate a broad range of technical and social issues related to the Net Zero target.

Machines and Workflows

People and Process

(Slide extracts from Martin Juckes)
IRIS-CAST – The Carbon costing for computing Audit Snapshot

Good robust decisions need good robust information

Challenges/questions

- Estimating the carbon costs for scientific computing across a broad heterogeneous landscape
- Identifying the key drivers
- Identifying the hurdles and barriers
- Communicating the costs to drive change
- Working coherently across different communities

Actions and Objectives

- Work together coherently across different facilities with different remits, tooling, and capabilities.
- Learn by doing!
- Document the gaps, the barriers and the issues, drive requirements for future work and decision making
- Communicate across our communities and build a foundation for future action
IRIS-CAST – The Carbon costing for computing Audit Snapshot

Good robust decisions need good robust information

IRISCAST is a 6 month project funded within the UKRI Net Zero Scoping Project

Project Team
Alison Packer (STFC)
Anish Mudaraddi (STFC)
Derek Ross (STFC)
Dan Traynor (QMUL)
Jon Hays (QMUL)
Alex Owen (QMUL)
Dan Whitehouse (Imperial)
Adrian Jackson (Edinburgh)
Alastair Basden (Durham)
Nic Walton (Cambridge)
Alex Ogden (Cambridge)
IRIS-CAST – The Carbon costing for computing Audit Snapshot

Good robust decisions need good robust information

Facilities

QMUL GridPP Tier 2 STFC SCARF
Imperial GridPP Tier 2 DiRAC (Durham)
STFC SCD Cloud Cambridge IRIS HPC/Cloud
IRIS-CAST – The Carbon costing for computing Audit Snapshot

Good robust decisions need good robust information

- Inventory
- Data collection
- Analysis
- Community Engagement
IRIS-CAST – The Carbon costing for computing Audit Snapshot

Good robust decisions need good robust information

Inventory
• Define the scope of the audit
• Build a comprehensive list of all equipment covered by the audit
• Needed to build carbon model including embodied costs
Good robust decisions need good robust information

Data Collection

• Collect data over a 24 hour period covering differing operating conditions
 • Rack, Node, and Job level logging
 • Store data in central repository
IRIS-CAST – The Carbon costing for computing Audit Snapshot

Good robust decisions need good robust information

Analysis

• Integrate the different datasets into coherent curated data set
• Refine carbon model
• Extract insights, observations, and conclusions
IRIS-CAST – The Carbon costing for computing Audit Snapshot

Good robust decisions need good robust information

Community Engagement
• Talk at CIUK
• Produce draft report
• Publish curated data set and definition of the carbon modelling
• Engage with our communities through an IRIS Workshop – 9th, 10th January in Cambridge
• IRIS Collaboration Meeting 13th January
IRIS-CAST – The Carbon costing for computing Audit Snapshot

Good robust decisions need good robust information

Next steps...

- **Inventory**
 - Done

- **Data collection**
 - Done

- **Analysis**
 - In progress

- **Community Engagement**
 - In progress
Collate hardware information

Collate snapshot data

Data cleaned, harmonised and imported into OpenSearch

Provides visualisations, dashboards and an API

Do this for all sites/facilities/clusters

Anish Mudaraddy, Alison Packer, STFC
Carbon model

Carbon model aims

• Turn gathered energy data in climate impact
 • Carbon (equivalent) emitted

• Evaluate non-active carbon impact
 • Embodied (embedded, sunk cost, etc...)

• Evaluate the order-of-magnitude of different components
 • Facilities, cooling, people, hardware components, etc...

• Evaluate if we need to collect different/more data

Adrian Jackson, Edinburgh
Embodied Carbon

Varies considerably depending on node configuration...

Embodied carbon estimates

Adrian Jackson, Edinburgh
Embodied Carbon

- Estimate based on single node made up value:
 - 350 kgCO$_2$
 - 4 year life span
 - 0.24 kgCO$_2$ per day

- Estimate for a the snapshot resources
 - 2398 nodes
 - 575.25 kgCO$_2$

- Need a lot more work to make this accurate and trustwort
Active carbon (scope 2)

WARNING – initial back-of-envelope calculations – not yet properly verified!

Consider three energy supply carbon intensity scenarios: low, medium, high

<table>
<thead>
<tr>
<th>System</th>
<th>Cumulative energy used (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QMUL</td>
<td>1299.7 (118 compute nodes)</td>
</tr>
<tr>
<td>CAM</td>
<td>261.5 (59 compute nodes)</td>
</tr>
<tr>
<td>DUR</td>
<td>8699.9 (Cosma8 360 nodes (4175.3), Cosma7 452 nodes (3979.1), Storage (345.4))</td>
</tr>
<tr>
<td>STFC CLOUD</td>
<td>3903.2 (597 compute nodes (2624.3) + 103 storage nodes (1743.9) + 21 control nodes (62.2))</td>
</tr>
<tr>
<td>STFC SCARF</td>
<td>4271.3 (571 compute nodes (3288.6))</td>
</tr>
<tr>
<td>IMP</td>
<td>943.9 (117 compute nodes)</td>
</tr>
<tr>
<td>Total</td>
<td>19379.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System</th>
<th>Active Energy Carbon (C_{AE}^p) (kgCO2)</th>
<th>Mean Node Active Energy Carbon (C_{AE}^n) (kgCO2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QMUL</td>
<td>Low: 65 Medium: 227 High: 390</td>
<td>Low: 0.55 Medium: 1.92 High: 3.31</td>
</tr>
<tr>
<td>CAM</td>
<td>Low: 13 Medium: 46 High: 78</td>
<td>Low: 0.22 Medium: 0.78 High: 1.32</td>
</tr>
<tr>
<td>DUR</td>
<td>Low: 435 Medium: 1522 High: 2610</td>
<td>Low: 0.54 Medium: 1.87 High: 3.21</td>
</tr>
<tr>
<td>STFC CLOUD</td>
<td>Low: 195 Medium: 683 High: 1171</td>
<td>Low: 0.27 Medium: 0.95 High: 1.62</td>
</tr>
<tr>
<td>STFC SCARF</td>
<td>Low: 214 Medium: 747 High: 1281</td>
<td>Low: 0.37 Medium: 1.31 High: 2.24</td>
</tr>
<tr>
<td>IMP</td>
<td>Low: 47 Medium: 165 High: 283</td>
<td>Low: 0.4 Medium: 1.41 High: 2.42</td>
</tr>
</tbody>
</table>

Adrian Jackson, Edinburgh
Active carbon (scope 2)

WARNING – initial back-of-envelope calculations – not yet properly verified!
Three PUE scenarios...

Active carbon estimate

<table>
<thead>
<tr>
<th>Metric</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Energy Carbon (kgCO2)</td>
<td>969</td>
<td>3391.4</td>
<td>5813.8</td>
</tr>
<tr>
<td>PUE Estimate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Energy Carbon including Facilities (kgCO2)</td>
<td>1066</td>
<td>1260</td>
<td>1550</td>
</tr>
</tbody>
</table>

- Lowest low: 1066 kgCO2
- Highest high: 9302 kgCO2

Adrian Jackson, Edinburgh
Summary

- 24 hour period
 - Embodied carbon estimate:
 - 575 kgCO₂
 - Active carbon range:
 - 1066 – 9302 kgCO₂
- Active looks bigger, 2-10x bigger depending on the assumptions we make
- However, active will reduce as the energy mix gets cleaner
- Embodied has very wide error margins at the moment
- Other things look much lower impact (i.e. buildings)
- Comparator:
 - https://www.carbonindependent.org/22.html
 - Typical flight CO₂ emissions: 92 kgCO₂ per passenger per hour
 - Imaginary 24 hour flight for one person 2208 kgCO₂

Adrian Jackson, Edinburgh
Next steps

Complete the carbon analysis
Write the final report
Contribute to the NetZero Scoping Project Report

Carbon monitoring for IRIS?
IRIS Net-Zero policy development
Future collaboration with UKRI NetZero activities