Machine Learning Developments in ROOT

Sergei Gleyzer, Lorenzo Moneta
for the ROOT-TMVA Team

QMUL, December 7, 2016
Outline

• Status and Overview

• New TMVA Features
 – External Interfaces
 – Deep Learning, Jupyter, Parallelization

• Future Plans and Outlook

• Summary
New TMVA version released in
ROOT 6.0.8
New TMVA Features
New Features

Modularity, External Interfaces, Updated SVM

Analyzer Tools: Variable Importance

Deep Learning CPU, GPU
Parallelization with multithreading and GPUs

Analyzer Tools: Cross-Validation, Hyper-Parameter Tuning

Regression Loss Functions

Jupyter: Interactive Training, Visualizations

Unsupervised Learning

Deep Autoencoders

Multi-processing, Spark parallelization

Added in 2015

Upcoming
TMVA Interfaces

Interfaces to External ML Tools

• **RMVA** interface to R
• **PyMVA** interface to scikit-learn
• **KMVA** interface to Keras
 – High-level interface to Theano, TensorFlow deep-learning libraries
Deep Learning

Is a powerful Machine Learning method based on Deep Neural Networks (DNN) that achieves significant performance improvement in classification tasks.
Deep Learning

New Deep-Learning Library in TMVA

- GPU support
 - CUDA
 - OpenCL

- Excellent performance and high numerical throughput
Deep Learning

CPU Performance:
Implementation:
• OpenBLAS, TBB

Peak performance per core:
• 16 GFLOP/s
• Single, Double Precision
GPU Performance:
Network:
• 20 input nodes
• 5 hidden layers with n_h nodes each
Hardware:
• NVIDIA Tesla K20
• 1.17 TFLOP/s peak performance @ double precision
Deep Learning

Throughput Comparison

Theano

Single precision

batch size = 1024

Excellent throughput compared to Theano on same GPU

2.7 * Theano

Throughput Comparison Graph

Numerical Throughput [GFLOP/s]

0

100

200

300

400

500

TMVA CPU

TMVA OpenCL

TMVA CUDA

Theano
Deep Learning

ROC Performance: significant improvements compared to shallow networks and boosted decision trees
Cross Validation

New features:

• k-fold cross-validation

• Hyper-parameter tuning
 – Find optimized parameters (SVM, BDT)
Regression

New Regression Features:

Loss functions:
- Huber (default)
- Least Squares
- Absolute Deviation
- Custom Function

Important for regression

Higher is better
Jupyter Integration

Classifier output: Neural networks, decision trees

Simple neural network
- Python function reads the network, converts to JSON; JS with d3js make the visualization from JSON
- Interactive: focusing connections, zooming, moving

Deep neural network
- HTML5 Canvas visualization (speed)
- Less interactive: zooming, moving

Decision trees
- Ipywidgets: input field for selecting the tree
- Visualization from JSON with D3js
- Interactive: closing subtree, showing the path, focusing, moving, zooming, reset
Pre-processing

New pre-processing features:

• Hessain Locally Linear Embedding
 – (Hessian LLE)

• Variance Threshold
Some Upcoming Features
Spark TMVA

SPARK Parallelization

Good speed-up in prototype R&D
Deep Autoencoder

Deep Autoencoders

Layer 1

Layer 2

Input Features → Calculate Variance → Compare Threshold → Selected Features

- Deep neural network is trained to output the input i.e. learn the identity functions.
- Constrain number of units in hidden layer, thus learning compressed representation.
Summary

• Many new features in TMVA release in ROOT 6.0.8
 – Production-ready parallelized Deep Learning
 – Cross-validation, Hyper-parameter tuning
 – Jupyter integration
 – More pre-processing features
 – Regression updates

• Many contributions

• Feedback and further contributions welcome
Feature Contributors

- Sergei Gleyzer
 Analyzer Tools, Algorithm Development
- Lorenzo Moneta
 Multi-threading, Multi-processing
- Omar Zapata Mesa
 PyMVA, RMVA, Modularity, Parallelization
- Peter Speckmeyer
 Deep-Learning CPU
- Simon Pfreundschuh
 Deep-Learning CPU and GPU
- Adrian Bevan, Tom Stevenson
 SVMs, Cross-Validation, Hyperparameter Tuning
- Attila Bagoly
 Jupyter Integration, Visualization, Output
- Albulena Saliji
 TMVA Output Transformation
- Stefan Wunsch
 KERAS Interface
- Pourya Vakilipourtakalou
 Cross-Validation, Parallelization
- Abhinav Moudhil
 Pre-processing, Deep Autoencoders
- Georgios Douzas
 Spark, Cross-Validation, Hyperparameter Tuning
- Paul Seyfert
 Performance optimization of MLP
- Andrew Carnes
 Regression, Loss Functions, BDT Parallelization
- More team members joining effort

12/07/2016
Sergei V. Gleyzer
QMUL Machine Learning Workshop
More Information

Websites: http://root.cern.ch
 http://iml.cern.ch
 http://oproject.org
Inter-experimental LHC Machine Learning working group

– Exchange of HEP-ML expertise and experience among LHC experiments
– ML Forum
– ML software development and maintenance
– Exchange between HEP and ML communities
– Education (Tutorials)
Backup
TMVA Deep Learning

Design

$U_1 = f_1(XW^T + \theta_1)$ $U_2 = f_2(U_1W^T + \theta_2)$

$J_N(y, \hat{y})$

GradientDescent

OO Model

TDataLoader TNNet
TBatch TLayer

Low-level Interface

TCuda TCpu
TCudaMatrix TCpuMatrix
cuBLAS curand
BLAS TBB
TOpenCL TOpenCL