Machine learning applied to neutrino physics

GRADnet Machine learning and AI workshop
16 January 2020
Sophie King
Hello

* Joint PhD with Queen Mary and University of Southampton
 → Leptogenesis
 → T2K, Neutrino cross sections

* Post doc at Queen Mary and King’s College
 → T2K and Hyper-K experiments
 → cross sections
 → selection and detector systematic development
 → computing / GRID

My interest in machine learning (ML)

* The detector I work on (T2K near detector) is being upgraded next year

* Hyper-K will introduce two new detectors

→ Lots of development for upcoming detectors
 → good time to start looking into the potential role
 ML can take in the new detectors
Contents

Nova: Particle identification with 2D Convolutional Neural networks
→ final product, used in their main analysis

superFGD: Voxel classification in the T2K near detector

WatCHMaL: Particle identification for the Hyper-K Intermediate Water Cherenkov Detector
→ both examples are very much in the development stage

Other examples/potentials of ML in neutrino physics

Summary
Nova:

Particle Identification with
2D Convolutional Neural networks

Convolutional neural networks

Graphic: https://towardsdatascience.com
Nova

Fine grained liquid scintillator neutrino detector – 2D planes

Out performs the ‘standard’ methods previously used
→ now fully adopted into oscillation analysis!

Neutrino interactions and generators → A warning!

Interactions occur with nucleons bound inside a nucleus → **Nuclear effects!!**

We know our neutrino interaction generators are ‘dodgy’ at best → **be very careful using them for training !!**

It is not expected that they model energy deposit around the vertex/interaction point well

Is much safe to e.g. do particle ID on an electron (rather than a nue interaction)
SuperFGD:
Voxel classification
in the T2K near detector
The T2K experiment

* Long-baseline neutrino oscillation experiment in Japan

* High intensity neutrino beam, predominantly $\nu_\mu (\bar{\nu}_\mu)$

* Primary goal is to measure neutrino oscillation properties
 $\rightarrow \nu_e (\bar{\nu}_e)$ appearance and $\nu_\mu (\bar{\nu}_\mu)$ disappearance

Main goal: CP violation in the lepton sector!
The T2K experiment

Far detector: Super-Kamiokande (SK)
- measures oscillated neutrino spectrum
- Cylindrical Water Cherenkov detector
- 40m tall, 40m radius
The T2K experiment

Far detector: **Super-Kamiokande (SK)**
- measures oscillated neutrino spectrum
- Cylindrical Water Cherenkov detector
- 40m tall, 40m radius

Near detector: ND280
- composite detector
 - scintillator, EM calorimeters
 - time projection chambers

Constrains flux and neutrino interaction models
- Undergoing an upgrade in 2021
- New ‘SuperFGD’
SuperFGD (Super Fine Grained Detector)

New sub-detector for the T2K composite near detector
To be installed in 2021 - currently being tested in a neutron beam

Made of scintillating cubes in a 3D grid
Optical fibres pass through cubes in all 3 planes

Motivation:
→ increases active target mass
→ improved angular acceptance
→ reconstruct low energy short tracks
 → improved hadronic information
 → better γ → e⁺ e⁻ identification

SuperFGD size: 192×192×56 cubes

Technical Design Report for nd280 upgrade:
arXiv:1901.03750
The superFGD

2D readout from each plane

* charge
* time

Construct 3D hit info from the 2D planes
SuperFGD: Voxel classification

Construct 3D hits (voxels’) from the 2D planes (some basic recon involved)

- **Track voxel:**
 - a cube with a **real deposition**
 - a particle has passed through

- **Crosstalk voxel:**
 - a cube with a **real deposition**
 - but **no particle** has passed through it
 - physical effect → cube-to-cube optical cross-talk

- **Ghost voxel:**
 - a cube that does **NOT** have any **real deposition**
 - no particle has passed through
 - reconstruction ambiguity when going from 2D to 3D

→ Plan: Use machine learning technique to classify the voxels
SuperFGD: Voxel classification

Desires

* Classification of individual nodes/voxels
 (rather than e.g. image recognition, segmentation)
* Works well on unseen data (different numbers of nodes, different config)

Graph Neural Networks (GNNs)

* Suited to individual node classification
* Uses neighbourhood/adjacency of node (suited for ghost, cross talk classification)
* graph representation lightweight (e.g. compared to full 3D grid of the detector)

GraphSAGE (type of GCN)

* samples nodes neighbourhood, trains on formations
* sampling and aggregating technique
 → less computationally intense
 → generalises to unseen data, graphs of varying sizes etc.
SuperFGD: Voxel classification

We attach variables to each node

Fundamental / Low level variables

- Voxel position (X, Y, Z).
- # of photoelectrons in each plane.

- Multiplicity in each plane.
SuperFGD: Voxel classification

We attach variables to each node

Constructed variables

Can play around adding/removing different constructed variables to see which help the most
SuperFGD: Voxel classification

Graphs are a set of nodes and edges/connections

For some graphs, you will naturally have the connections/edges
e.g. citation links, chemical bonds

In this case we need to define connections/edges
→ you can play around with different ways depending on the problem you are trying to solve

2D example

How do we get the edges E?
Solution: use a radius r to find neighbours.

2D example

How do we get the edges E?
Solution: use a radius r to find neighbours.

Observation: each node (voxel) contains the information provided by both the fundamental and constructed variables
SuperFGD: Voxel classification

Each node is defined by sampling and aggregating its neighbourhood - can play around with your method of sampling and method of aggregating to suit your problem.

Can think of sampling and aggregating a bit like in CNN when you take a patch of the whole image, and transform/conv and aggregate/max-pool it.
SuperFGD: Voxel classification

Results (GraphSAGE)

Event 1: simulated vs pred. (GIF image*):

<table>
<thead>
<tr>
<th></th>
<th>True track voxel</th>
<th>True crosstalk voxel</th>
<th>True ghost voxel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pred track voxel</td>
<td>0.898</td>
<td>0.070</td>
<td>0.029</td>
</tr>
<tr>
<td>Pred crosstalk voxel</td>
<td>0.099</td>
<td>0.890</td>
<td>0.041</td>
</tr>
<tr>
<td>Pred ghost voxel</td>
<td>0.003</td>
<td>0.040</td>
<td>0.930</td>
</tr>
<tr>
<td>Total</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>
SuperFGD: Voxel classification

GraphSAGE performing well at classifying voxels

Still in development stage
- defining connections, sampling
 - some hits (0.04%) have no nearest neighbour under current system
- adding/removing constructed variables

Future
- add timing information
- considering systematic uncertainties
 - cross talk model
 - interaction generators (hopefully just a sanity check)
- extend to tasks such as vertex reconstructions
WatCHMaL:
Particle identification
for the Hyper-K
Intermediate Water Cherenkov Detector

arXiv:1911.02369
Variational Autoencoders for Generative Modelling of Water Cherenkov Detectors

https://indico.cern.ch/event/835190/contributions/3613920/attachments/1941211/3218735/WatChMaL_NNN19.pdf

Abhishek Abhishek, Wojciech Fedorko, Patrick de Perio, Nicholas Prouse, Julian Z. Ding
The Hyper-K experiment

Bigger and better version of T2K

* T2K beam
* T2K detectors
* New Water Cherenkov (WC) far detector

Size comparison

SK: height 40m, diameter 40m
→ 50 kton

HK: height 72m, diameter 68m
→ 258 kton
The Hyper-K experiment

Bigger and better version of T2K

* T2K beam
* T2K detectors
* New Water Cherenkov (WC) far detector
* New intermediate WC detector (IWCD)

Additional near/intermediate detector (0.75km)

Also designed to constrain flux and neutrino interactions

Same target (water) as far detector

Ability to move up and down
→ samples flux at different angles
→ sample flux with different energy peaks/profiles
→ measure interactions across range of energies
Hyper-K: Intermediate Water Cherenkov Detector

Detector walls lined with photomultiplier tubes (PMTs)
→ multi-PMT module contains 19 PMTs (3 inch)

→ detected light creates 2D image on the tank walls
 → Can we use ML for particle identification

→ each multi-PMT can act as a pixel/node for neural network methods

→ each pixel has 19 channels (charge of each PMT)
 (can extend to 38 channels if you include time)
Hyper-K: Intermediate Water Cherenkov Detector

Can ML help with gamma(s) Vs electron? Events with pions?

2D patterns in grid characterize particle type → 2D CNN obvious place to start

Issue: How to deal with the cylindrical shape?
→ For now, ignore top/bottom of detector
→ Simulate particles from centre of tank, perpendicular towards the walls
→ particle gun: e, mu, gamma

mu rings – clear e rings - ‘fuzzy’

e Vs gamma

90% γ rejection @ 50% e - efficiency
73% γ rejection @ 80% e - efficiency

2D CNN results:

(excludes top/bottom of tank)

e Vs mu
>99% mu/e discrimination

This is very promising!
Hyper-K: Intermediate Water Cherenkov Detector

Fully supervised CNN showed very promising potential

→ encouraged further exploration of ML techniques

→ Variational Autoencoders (VAE)
Autoencoder

- Training your network to find the reduced set of latent variables
- Train such that the decoder network can reproduce the original image

→ No ‘truth’ needed, i.e. can you unlabelled data / unsupervised

→ Uses: compression / decompression of data!
(denoising) Autoencoder

Modify input, but train on the original

→ Denoising/cleaning images

→ Object removal in images

\[L(\theta, \phi) = \frac{1}{n} \sum_i [x^i - f_\theta(g_\phi(x^i))]^2 \]
Variational Autoencoder

Replace bottleneck latent variable with probabilistic distributions

Sample from this to form latent vector to feed to the decoder

Generative model

- Can use unlabelled data to learn the latent variables

- Sample from the latent space to generate new images

Note: Can add a parameter to control regularization strength

\[L = - E_{q_{\phi}(z|x)}[\log{ P_{\theta}(x|z) }] + D_{KL}(q_{\phi}(z|x) \parallel P_{\theta}(z)) \]
Variational Autoencoder

Generative model

Hope to train your latent variables to have physical meaning

e.g. moving in one direction in your latent space can equate to your image rotating, or getting fatter/thinner etc.

→ sample from the latent space to generate new images

L = -E_qφ(z|x)[log{ P_θ(x|z) }] + D_{KL}(q_φ(z|x) | P_φ(z))

Reconstruction term

Divergence / regularisation
Hyper-K: Intermediate Water Cherenkov Detector

Initial test:
- Unsupervised / unlabelled training to learn latent space
- Generate new event images
- Test if directions in latent space correspond to physical interpretations
Hyper-K: Intermediate Water Cherenkov Detector

Figure 2: Cherenkov ring images comparing actual simulated events (top) with their corresponding VAE reconstructed events (bottom).

Figure 3: Cherenkov ring images for events randomly sampled from the latent prior $p(z) = \mathcal{N}(0, I)$.

Figure 4: Linear interpolation in the latent space for μ^- events along the angle axis from $\phi = 0$ to $-\pi$ (top) and energy axis from 200 MeV to 800 MeV (bottom).
Hyper-K: Intermediate Water Cherenkov Detector

Next test: Introduce small sample of labelled data

Test semi-supervised and supervised learning for particle identification (PID)

<table>
<thead>
<tr>
<th>Number of training examples</th>
<th>γ background rejection (%) at 50% e^- signal efficiency</th>
<th>γ background rejection (%) at 80% e^- signal efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SS-CNN</td>
<td>CNN</td>
</tr>
<tr>
<td>11, 250</td>
<td>77.6</td>
<td>76.4</td>
</tr>
<tr>
<td>22, 500</td>
<td>80.4</td>
<td>78.1</td>
</tr>
<tr>
<td>45, 000</td>
<td>80.7</td>
<td>79.4</td>
</tr>
</tbody>
</table>

\rightarrow Semi-supervised learning outperforms fully supervised method
Hyper-K: Intermediate Water Cherenkov Detector

Potential

* Train on unlabelled data, calibration data, control samples

* Using direction in latent space to extrapolate to phase space with limited data

* Training on real calibration data
 → use VAE for part of MC generation
 → possible to circumvent detector model/syst for certain aspects

Possible difficulties

* Image (re)construction still needs work
 - ring sharpness, replicating dark noise and scattered/reflected light

* Low energy events / neutron capture expected to be difficult
 - sparse PMT hits
Hyper-K: Intermediate Water Cherenkov Detector

Biggest issue so far: Detector geometry
- test so far have been based on tank wall only, not the top/bottom

Ways to ‘flatten’ geom and construct CNN

Methods that focus just on the pixels

Point cloud: PointNET
Each pixel is a member of a list
pointNET uses symmetric functions to avoid problem of ordering in the list

GraphSAGE
Test options for defining edges and sampling method
Summary
Other uses of ML in nu physics

Current

T2K near detector we use BDTs for pi0 tagging
→ low level variables from multiple detectors
→ effective at improving efficiency

Liquid argon TPC images are perfect for CNN
- MicroBooNE
- Dune

Potential

HK
→ possibilities to use ML for basic recon info for DAQ
→ Current reconstruction is incredibly slow... can we use ML to speed things up?

Automating shifts (to some extent) – identifying problems/solutions
Summary

Lots of different uses for ML in neutrino physics

NoVa led the way with 2D CNN work for particle ID

Other techniques being explored such as voxel classification: GNN

Potential for reconstruction techniques
- microboone leading the way
- nd280 upgrade and HK heading towards that direction

New/Current generation of Liquid argon detectors well suited to CNN

Warning: Be careful with trusting hadronic/vertex information from neutrino generators!
References

ArXiv: 1901.03750 T2K ND280 upgrade technical design report

MicroBooNE: Image based reconstruction
https://indico.desy.de/indico/event/21853/session/2/contribution/46/material/slides/0.pdf

Backup Slides
SK Systematic errors

<table>
<thead>
<tr>
<th>Error source</th>
<th>1-Ring μ</th>
<th></th>
<th>1-Ring e</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FHC</td>
<td>RHC</td>
<td>FHC</td>
<td>RHC</td>
<td>FHC 1 d.e.</td>
<td>FHC/RHC</td>
</tr>
<tr>
<td>SK Detector</td>
<td>2.40</td>
<td>2.01</td>
<td>2.83</td>
<td>3.80</td>
<td>13.15</td>
<td>1.47</td>
</tr>
<tr>
<td>SK FSI+SI+PN</td>
<td>2.21</td>
<td>1.98</td>
<td>3.00</td>
<td>2.31</td>
<td>11.43</td>
<td>1.57</td>
</tr>
<tr>
<td>Flux + Xsec constrained</td>
<td>3.27</td>
<td>2.94</td>
<td>3.24</td>
<td>3.10</td>
<td>4.09</td>
<td>2.67</td>
</tr>
<tr>
<td>E_b</td>
<td>2.38</td>
<td>1.72</td>
<td>7.13</td>
<td></td>
<td></td>
<td>3.62</td>
</tr>
<tr>
<td>$\sigma(\nu_e)/\sigma(\bar{\nu}_e)$</td>
<td>0.00</td>
<td>0.00</td>
<td>2.63</td>
<td>1.46</td>
<td>2.61</td>
<td>3.03</td>
</tr>
<tr>
<td>NC1γ</td>
<td>0.00</td>
<td>0.00</td>
<td>1.09</td>
<td>2.60</td>
<td>0.33</td>
<td>1.50</td>
</tr>
<tr>
<td>NC Other</td>
<td>0.25</td>
<td>0.25</td>
<td>0.15</td>
<td>0.33</td>
<td>0.99</td>
<td>0.18</td>
</tr>
<tr>
<td>Osc</td>
<td>0.03</td>
<td>0.03</td>
<td>2.69</td>
<td>2.49</td>
<td>2.63</td>
<td>0.77</td>
</tr>
<tr>
<td>All Systematics</td>
<td>5.12</td>
<td>4.45</td>
<td>8.81</td>
<td>7.13</td>
<td>18.38</td>
<td>5.96</td>
</tr>
<tr>
<td>All with osc</td>
<td>5.12</td>
<td>4.45</td>
<td>9.19</td>
<td>7.57</td>
<td>18.51</td>
<td>6.03</td>
</tr>
</tbody>
</table>

Table 5: Percentage error on event rate by error source and sample. Final column is the percentage error on the ratio of FHC/RHC events in the one-ring e sample.
Near Detectors
280m from the ν ($\bar{\nu}$) source

ND280
Same off-axis angle as SK

- Active target mass \rightarrow 2 x scintilltors (FGDs) \rightarrow vertex reconstruction
- 3 Time projection chambers (TPC) \rightarrow momentum reconstruction
 \rightarrow charge identification
 \rightarrow Particle identification (PID)
- Electromagnetic calorimeters (Ecal) \rightarrow PID
- π^0 detector and side muon range detector
T2K flux and neutrino cross sections

CCQE

CCRES

CCDIS
The T2K experiment

* Long-baseline neutrino oscillation experiment
* High intensity neutrino beam, predominantly ν_μ ($\bar{\nu}_\mu$)
* Primary goal is to measure neutrino oscillation properties
 $\rightarrow \nu_e$ ($\bar{\nu}_e$) appearance
 $\rightarrow \nu_\mu$ ($\bar{\nu}_\mu$) disappearance
* Off-axis far detector \rightarrow oscillated neutrinos (295km)
* On/Off-axis near detectors \rightarrow unoscillated beam (280m)
ND280 will be upgraded in 2021 during the beam upgrade

Pi0 detector is being replaced by
- SuperFGD
 - higher granularity
 - 3D readout
- Horizontal TPCs (HTPCs)
- Time of Flight (ToF) planes

→ increases active target mass for oscillation analysis
→ improved angular acceptance
→ able to reconstruct low energy short tracks
 → improved hadronic information
 → better $\gamma \rightarrow e^+ e^-$ identification
T2K II: SK upgrade

* SK repairs performed in 2018
 - detector drained and cleaned
 - reinforcement of water sealing
 - improved tank piping
 - PMTs replaced

* Plan to add Gadolinium to the water
 - 0.01% next year
 - increase to 0.1% eventually

→ Better \(\nu / \bar{\nu} \) separation
PointNet – Point cloud neural network

arXiv:1612.00593

Data stored as unordered set of points
→ less cumbersome than creating 3D grid of voxels
→ no combinatorial issues

Requires points to be invariant to permutations
→ Done by using a symmetric function to aggregate the info from each point/neuron

Invariant under geometric transformations
- point cloud rotation should not alter result

Construct a family of symmetric functions by neural networks
Variational Autoencoder

Don’t need to back propagate through the stochastic node

→ we are not trying to modify epsilon